Датчик утечки газа своими руками

Сигнализатор утечки бытового газа

Постоянный контроль концентрации взрывоопасных газов в воздухе жилых и рабочих помещений – наиболее эффективное средство предупреждения их возгорания. С течением времени актуальность газовой безопасности только растёт. Воздушная среда, окружающая нас, может содержать не только источник жизни – кислород, но и опасные вещества, например, взрывоопасные газы. Приборами технической безопасности служат газовые детекторы. Они предназначены для обнаружения превышения допустимых уровней концентрации опасных газов в окружающей среде.

Природный газ – один из наиболее взрывоопасных – широко применяют в быту в качестве дешёвого горючего для отопления, подогрева воды и приготовления пищи. Как известно, основной компонент природного газа – метан (CH4), его в нём от 70 до 98 %. Следовательно, для контроля утечки природного газа необходимо использовать датчик, реагирующий на концентрацию метана в воздухе.

Концентрационные пределы распространения пламени в смеси метана с воздухом в объёмных процентах: нижний – 5, верхний – 15 [1]. Нижним концентрационным пределом распространения пламени (НКПР) или нижним порогом взрываемости (НПВ) называют минимальную долю горючего вещества в однородной смеси с окислителем (воздухом, кислородом), при которой возможно распространение пламени по смеси на любое расстояние от источника зажигания (открытое внешнее пламя, искровой разряд и др.). Для метана 100 % НКПР (НПВ) = 5 объёмных процентов = 50000 ppm = 33500 мг/м 3 [2].

Как правило, большинство серийно выпускаемых сигнализаторов утечки бытового газа настроены на его концентрацию в один объёмный процент. Именно при такой концентрации они подают сигнал тревоги, включают систему вентиляции помещения и с помощью электромагнитного клапана отключают подачу газа в систему газоснабжения жилого дома или квартиры.

Наилучшим образом подходят для контроля утечки горючих газов благодаря простоте конструкции полупроводниковые и термокаталитические датчики пеллисторного типа. Обычно полупроводниковые датчики применяют лишь для сигнализации о превышении допустимой концентрации метана в воздухе, а если есть необходимость измерить концентрацию газа, то используют двухпеллисторные термокаталитические датчики. В них два пеллистора – спирали из платиновой проволоки, разогретые проходящим через них током до температуры около 400 о С. Они образуют обычный резистивный делитель напряжения (рис. 1 ).

Рис. 1. Резистивный делитель напряжения

Когда метана в воздухе нет, сопротивления обоих пеллисторов равны, следовательно, выходное напряжение делителя – ровно половина напряжения питания Uпит. Поскольку активный пеллистор покрыт слоем катализатора, на его поверхности при наличии метана происходит реакция окисления этого газа кислородом воздуха. Температура активного пеллистора увеличивается, а сопротивление растёт. Включив такой датчик в измерительный мост, можно легко измерить напряжение разбаланса моста:

а по нему определить концентрацию газа.

Термокаталитические датчики недороги и просты в применении, но обладают рядом недостатков. Во-первых, при большой концентрации газа происходит перенасыщение датчика, и он выходит из строя. Во-вторых, катализатор со временем истощается, что приводит к снижению чувствительности датчика. В-третьих, для происходящей в датчике химической реакции необходим кислород, поэтому при его недостатке датчик сильно занижает показания. И наконец, термокаталитический датчик может быть “отравлен” некоторыми веществами. Он чувствителен, например, к воздействию силикатов или высокой концентрации сероводорода (H2S). Кроме того, термокаталитические датчики требовательны к обслуживанию. Чтобы быть уверенными в их работоспособности, необходимы периодические проверки. Время жизни пеллистора – максимум один-три года.

Всех этих недостатков лишены высоконадёжные и практически безотказные инфракрасные датчики горючих газов (NDIR-датчики). С помощью измерительного и нормирующего детекторов они оценивают степень поглощения газом инфракрасного излучения. Детекторы используют ИК-излучение двух длин волн. Одно из них газ поглощает, а второе – нет. Датчик измеряет уровень поглощаемого излучения и сравнивает его с уровнем образцового. Эта информация подвергается обработке по довольно сложному алгоритму, для чего практически в каждом датчике имеется встроенный микропроцессор.

Читайте также:
Поклейка обоев на гипсокартон

Цифровыми NDIR-датчиками серии PrimePell [3] можно заменять пеллисторные. Основа датчиков PrimePell – запатентованный ИК-датчик и микропроцессор на основе ядра ARM V7, управляющий датчиком, вычисляющий концентрацию газа и выводящий результат в аналоговой и цифровой форме. Микроконтроллер также следит за исправностью датчика и регистрирует сбои питания. Цифровая информация может быть получена либо через последовательный порт, либо по интерфейсу I 2 C, по которому также изменяют режимы работы датчика.

При условии подходящего напряжения питания датчиком PrimePell можно заменить ранее установленный в газоанализаторе термокаталитический датчик, причём никаких доработок анализатора для этого не требуется.

Схема сигнализатора утечки бытового газа с использованием инфракрасного датчика метана PrimePell изображена на рис. 2. Чувствительность этого датчика – 100 мВ на 100 % НПВ. Внутренние “пеллисторы” датчика и резисторы R1-R3 образуют измерительный мост. Сигнал, снятый с диагонали моста, усиливает инструментальный усилитель DA1 с фиксированным коэффициентом усиления 10. Его выходному напряжению 1000 мВ соответствует 100 % НПВ. Поэтому показания встраиваемого цифрового вольтметра PV1 в десятках милливольт численно равны процентам НПВ.

Рис. 2. Схема сигнализатора утечки бытового газа с использованием инфракрасного датчика метана PrimePell

В Великобритании (стране-изготовителе датчика) 100 % НПВ – это 4,4 объёмных процента, а не 5 объёмных процентов, как у нас. Исходя из этого, порог срабатывания компаратора DA2, соответствующий одному объёмному проценту, установлен равным 227 мВ подборкой резисторов R5 и R6. Высокая точность установки порога не требуется. При срабатывании компаратора пьезоизлучатель HA1 с встроенным генератором подаёт сигнал тревоги. Кроме этого, сигнал с компаратора через оптрон U1 поступает на исполнительные устройства – блок управления системой вентиляции (фрамужные открыватели, вытяжные вентиляторы и т. п.) и на электромагнитный газовый клапан, отключающий подачу газа.

Регулировка устройства сводится к установке нулевых показаний цифрового вольтметра PV1 с помощью переменного резистора R2 при отсутствии метана в воздухе. Гарантированный срок службы датчика – не менее пяти лет. Часто проверять его работоспособность нет необходимости.

1. Государственный стандарт Союза ССР ГОСТ 5542-87 “Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия”. – URL: http://www. ukrgazkom.com. ua/assets/files/ normative/5542-87.pdf (28.09.16).

2. Таблица соотношений концентраций для наиболее часто встречающихся горючих и токсичных газов (нормальные условия). – URL: http://centros.ru/tablica-gazy (28.09.16).

3. PrimePell Pellistor Replacement Infrared Gas Sensor. – URL: https://www. terraelectronica.ru/%2Fpdf%2FCLAIRAIR% 2FPrimePell-datasheet-DES 10-Iss4.pdf (28.09.16).

Автор: А. Корнев, г. Одесса, Украина

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Сигнализатор утечки газа

general view

Модуль на датчике MQ-4 состоит из датчика MQ-4 (метан) и компаратора на LMV393M. Порог срабатывания компаратора настраивается подстроечным резистором. При превышении установленного порога на выходе DO модуля устанавливается лог. 0 и включается светодиод. На выходной разъем также выводится напряжение с датчика (AO). На плате есть второй светодиод, который подключен напрямую к питанию.

Сигнализатор реагирует также и на другие горючие газы, проверял на газ из зажигалки, спирт, растворитель, толуол, дихлорэтан.

MQ4 modul

Схема модуля MQ-4.

В целом, модуль готов к применению в качестве самостоятельного устройства, если ограничиться светодиодной сигнализацией. Но это малоэффективно. Поэтому выход DO используется для управления внешними устройствами: звуковая и/или световая сигнализация, оповещение по радио или GSM каналу и т.п. Выход AO позволяет контролировать текущее состояние датчика и уровень загазованности места его установки.

Читайте также:
Жидкое стекло для гидроизоляции

Задача передавать куда-то данные или управлять какими-то внешними устройствами пока не ставилась, поэтому решено было сделать только свето-звуковой сигнализатор с измерителем выходного напряжения.

Схема собрана на микроконтроллере ATMEGA8, 2-х разрядном семисегментном индикаторе с общим катодом и пищалке без встроенного генератора. Для настройки параметров предусмотрено две кнопки.

Питание модуля и всего устройства от источника стабилизированного напряжения +5V. Ток потребления в дежурном режиме около 180 мА, при аварии к нему добавляется еще ток пищалки. В качестве блока питания использовалось зарядное устройство для мобильного телефона. Пищалка извлечена из старого мобильника неизвестного происхождения.

Светодиоды модуля удалены за ненадобностью.

Схема сигнализатора.

1. В основном режиме на индикатор выводится измеренное напряжение на датчике в Вольтах, диапазон измерения 0,0÷5,0V (если выбран режим CU), или выводится концентрация газа в тысячах ppm, (если выбран режим CP), диапазон 0,0÷9,9. Пример: концентрация 2300 ppm отображается как 2,3. Выбор режима отображения в настройках, п.2.1.
2. Если напряжение (в режиме CU) или концентрация (в режиме CP) превысит заданный порог (см. Настройки, параметр AL), тогда показания начинают мигать и раздается сигнал тревоги. (Параметры сигнала тревоги устанавливаются в настройках.)
3. При срабатывании дискретного сигнала от модуля MQ-4 срабатывает сигнализация аналогично п.2. В младшем разряде индикатора включается точка.
4. Звуковой сигнал меняется каждые 10 сек. Предусмотрено поочередное включение сирены, двойных коротких сигналов частоты F1 и двойных коротких сигналов частоты F2. F1 и F2 выбираются в настройках. Также устанавливается длительность звукового сигнала (t) и пауза (P) между сигналами.
5. Программа фиксирует максимальное значение напряжения и концентрации. Просмотреть их можно, нажимая на любую кнопку не более 1,5 сек. Для режима CU отображается максимальное напряжение, а для режима CP отображается максимальная концентрация. Сброс записанных значений – одновременное нажатие на обе кнопки с удержанием более 1,5 сек из основного режима. Если сработал дискретный сигнал, то максимальные значения переписываются значениями, на момент срабатывания дискретного сигнала.
6. Предусмотрено управление яркостью индикатора. Если яркость установлена OF, то в основном режиме индикатор отключается, каждые 5 сек кратковременно вспыхивает точка в старшем разряде. Когда срабатывает сигнализация индикатор включается на максимальную яркость. На максимальную яркость индикатор также включается при нажатии на любую кноп-ку.
7. В течении 30 сек после подачи питания устройство не реагирует на сигналы от модуля MQ-4. Максимальные значения не фиксируются. Индикатор включен на максимальную яркость.

Настройки.
1. Вход в режим настроек и выбор параметра для настроек нажатие и удержание более 1,5 сек любой из кнопок. Переход к установке параметра – короткое нажатие на любую кнопку. Установка параметра – короткое нажа-тие на кнопки (если кнопка нажата более 1,5 сек, то происходит переход к следующему параметру. Устанавливаемый параметр мигает с частотой 1Гц.
2. Параметры:
2.1. Un – выбор режима отображения. CU – отображение напряжения, V. CP – пересчет напряжения в ppm.
2.2. AL – устанавливается порог срабатывания сигнализации. Если в п.2.1 выбран режим CU, то устанавливается порог превышения входного напряжения; диапазон установки 0,0÷5,0V; по умолчанию 1,0V. Если в п.2.1 выбран режим CP, то устанавливается порог превышения концентрации; диапазон установки 0,0÷9,9; по умолчанию 0,5.
2.3. F1 – установка частоты первого тона. Диапазон установки 0,2÷5,0кГц. По умолчанию 1,0кГц. Во время настройки включается сигнал с выбранной частотой.
2.4. F2 – установка частоты второго тона. Диапазон установки 0,2÷5,0кГц. По умолчанию 3,0кГц. Во время настройки включается сигнал с выбранной частотой.
2.5. t – время звучания сигнала. Диапазон установки 0÷99 минут. По умолчанию 1 минута.
2.6. P – время паузы между сигналами. Диапазон установки 0÷99 ми-нут. По умолчанию 3 минуты.
2.7. b – яркость индикатора. Диапазон установки 1÷10 и выключено (OF). По умолчанию 5. Во время настройки индикатор светится с выбранной частотой.
3. Выход из режима настроек через 5 сек после последнего нажатия на кнопок. Индикатор переходит в основной режим, настройки записываются в энергонезависимую память микроконтроллера.

Читайте также:
Трубы для теплого пола: выбираем с умом и экономим деньги

Примечания.
1. Соответствие напряжение – концентрация является очень приблизительным и сильно зависит от условий измерения – температуры, влажности наличии в газе других компонентов и т.п.

Все устройство собрано в корпусе КМ-2А.

Место установки выбрано с учетом расположения газовых приборов, направления движения воздуха и как можно выше.

Элементы и внешний вид устройства:

view 1 view 2 view 3

Изначально планировалось крепление сигнализатора на стенку и подключение питания снизу через микро USB, поэтому плата под него. Затем было выбрано место сверху кухонного шкафчика и вывод питания сделан через заднюю стенку сигнализатора через разъем WH-02 (HU-02).

В архиве находятся прошивка для микроконтроллера, FUSE, описание работы, схема в Proteus и печатная плата (Proteus).

Версия прошивки пока не финальная. Сигнализатор находится в режиме тестирования.

Для вопросов и обсуждения создана соответствующая тема на форуме.

Проект обновлен. Добавлен пересчет напряжения в концентрацию метана, ppm.

Ломаем датчик утечки газа

Ежегодно в России из-за утечки бытового газа происходят десятки взрывов. В частности, грустный рекорд был отмечен в 2008 году, когда только в январе произошло 7 мощнейщих взрывов, в которых пострадали и погибли люди. О разрушениях и убытках я уже и не говорю. И это только случаи, которые попали в ленту федеральных новостей. На самом деле, утечек газа значительно больше. Изношенность оборудования, неаккуратность и безответственность — главные причины подобных трагедий. Их может быть меньше, если активнее внедрять системы контроля утечек газа, реализованных на недорогих электрохимических сенсорах. Одно из таких устройств попало мне в руки. Статья посвящена анализу девайса и возможных неспортивных способов его использования. Однако, главную функцию устройство выполняет всецело, поэтому после технических издевательств оно будет дополнительно протестировано в биогазовой лаборатории, о которой можно прочесть здесь, и затем подарено Матушке, у которой всю жизнь на кухне газ).

Внимание! Возрастное ограничение статьи 18+

А у нас в квартире газ! А у вас?

На самом деле газ является одним из самых удобных в использовании вещей. Профессиональные повара предпочитают готовить именно на газовых плитах. Это быстро, удобно, экономичнее, а мясо и хорошие стейки, пожалуй, можно приготовить только на огне. Газ обогревает миллионы людей, а современное газовое оборудование является надежным и безопасным при условии, что вы внимательно следите и правильно его эксплуатируете. Даже я при своем не плохом уровне понимания техники с интересом изучал устройство газового бойлера именно с точки зрения безопасности. Да, действительно, такие девайсы надежны.

Этот простенький рисунок показывает общий принцип действия прибора, конструкция же на самом деле достаточно не простая. Что обязательно в каждом такой устройстве — контроль расхода газа и горения пламени. Для его контроля используют инфракрасные датчики, а при малейших перебоях в подаче газа автоматика надежно отключает устройство. Газовое оборудование обязано быть установлено только специалистами газовой службы и его необходимо регулярно проверять.

Читайте также:
Насадка для шуруповерта: автоматическая подача герметика

При всей надежности оборудования нельзя исключать вероятности утечек газа. Для контроля таких утечек в газ добавляют специальные пахучие вещества — одоранты. Их задача — создание пахучести, что необходимо для установления утечек газа главным образом в бытовом потреблении. Для придания газу необходимого уровня запаха установлены нормы внесения одорантов по этилмеркаптану не менее 16 г/100 м3 газа. Это чрезвычайно токсичные и летучие вещества с омерзительным запахом. Именно этот запах человек расценивает как утечку газа, при этом сам природный газ не имеет цвета и запаха.

Контролируем утечки

Утечка газа может случиться по разным причинам, но в большинстве случаев это происходит из-за халатности человека. Сбежало молоко, убавили газ на плите и он потух, часто с газом балуются маленькие дети. Могут быть скачки магистрального давления в газовой трубе из-за перемерзания газовых труб в сильные морозы, так как в них может скапливаться конденсат. Поэтому полезно иметь датчик утечки газа, который может оповестить людей об утечке, к примеру, дополнительным звуковым сигналом. Одно из таких устройств (ссылка) мне попалось на изучение.

Девайс внешне сделан из хорошего пластика, нанесена шелкография, однако все надписи на английском языке. Сделано, конечно, в любимом Китае. Устройство подключается непосредственно в розетку и не требует батареек. Потребление мизерное (думаю несколько ватт), поэтому намотать много электроэнергии оно не в состоянии. Толково продуман дизайн с точки зрения газовой кюветы. Устройство имеет специальные вырезы, чтобы воздух проникал свободнее. Однако, для установки устройства лучше воспользоваться коротким удлинителем и спозиционировать его так, как сказано в инструкции — для природного магистрального газа ближе к потолку (метан легче воздуха), а если вы используете сжиженный газ или пропановые баллоны — к полу, так как этот газ тяжелее воздуха и стелется низом. При включении устройство издает короткий сигнал и начинает калиброваться. Этот процесс занимает несколько минут. В это время ничего не происходит и только мигает прочерк на цифровом индикаторе. Когда устройство откалибровалось, на экране появляется ноль. Калибровка важный момент и то, что она есть очень хорошо. Так как используется интегральный датчик, то устройство за ноль принимает уровень газового состояния в момент калибровки, что снижает вероятность ложных срабатываний. Это удобно, к примеру, на кухне, когда в любом случае при поджоге газа имеется кратковременная его утечка и откалибровать устройство лучше при всех включенных конфорках и духовке и через несколько минут включить датчик утечек газа для калибровки, чтобы устройство поняло «рабочий» уровень состава воздуха и не пикало, когда не нужно. Устройство было испытано в боевых условиях в моей биогазовой лаборатории, о которой я рассказывал в своем посте «Биогаз из биомасс» и дома у Матушки, у которой газ всю жизнь. Кстати, подобные датчики очень полезны именно в старых домах, где установлено доисторическое газовое оборудование. Я, конечно, неоднократно пытался заменить плиту, но это не так просто. Мама, старая закалка, маленькая кухня. Поэтому в большинстве старых квартир стоят такие вот маленькие плиты, хотя сделаны они очень добротно. Еще при Сталине)

Устройство расположено ближе к полу, так как в этом случае в квартиру подается пропан, который при утечке стелется низом.
Газ — не игрушка. Не повторяйте таких экспериментов сами! А если не сдержались, то не забудьте проветрить помещение и выключить газ!

Читайте также:
Инструмент для быстрого нанесения клея на плитку: интересное решение своими руками
Вскрытие устройства

Конечно, я вскрыл устройство для детального его изучения. Это не составило много труда, так как в нем нет никаких защелок, всё на саморезах.

Сделано устройство трудолюбивыми китайскими девушками (юношами), спаяно вручную и даже не отмыто от канифоли. Однако, все сделано добротно и даже проверено китайским ОТК). Конечно, для меня было интересно, на каком датчике сделано устройство и как запилено по схеме. Априори я полагал, что устройство использует датчик серии MQ и не ошибся. Никаких более знакомых мне деталей (я говорю о контроллерах, конечно) я не обнаружил. В устройстве поставлены загадочные китайские микросхемы, а само устройство спроектировано с явной избыточностью. Ведь датчик серии MQ можно запустить на копеечной Attiny или ATmega за несколько микросекунд. А если завалялась ардуинка, то ещё быстрее. Подключаем сигнальный вывод датчика к любому аналоговому порту, к примеру А0, подаем питание и через минуту получаем данные):

Это даже кодом не назвать. Кстати, ардуинщики молодцы, на сайте очень добросовестно всё про эти датчики собрали. Ссылка.

Но вернемся к нашему исследуемому устройству. Скорей всего, схема спроектирована так, чтобы её использовать в различных датчиках и приборах, путем замены сенсора и перепрошивки. Нормально! Все остальное стандартно. Я, конечно, поставил бы дополнительно предохранитель в цепи блока питания, но это скорей для трусов, нежели для смелых китайских инженеров. Ещё в устройстве меня удивил сигнализатор на 85 Дб. Аккуратно подлит жидкими гвоздями у датчика газа.

Может 85 Дб там и нет, но пищит он громко и довольно противно. Таким образом, оповещение в устройстве реализовано добротно. Кстати, громкая сирена включается не сразу. Устройство сначала начинает пикать, когда показание на экране становятся более трех единиц, а если более 9 — включается громкая сирена. По типу автомобильной. Пожалуй, её могут даже услышать соседи.

Немного о датчике газа. Такой же у меня оказался в коллекции. Это датчик серии MQ фирмы Henan Hanwei Electronics. Популярный датчик из серии электрохимических датчиков, технология изготовления которых хорошо отработана. Принцип работы датчика обнаружения газа основан на свойстве изменения проводимости тонкопленочного слоя диоксида олова SnO2 при контакте его с определяемым газом. Чувствительность к разного рода газам достигается путем легирования различных примесей в чувствительный слой датчика. Сам чувствительный элемент датчика состоит из керамической микротубы с покрытием Al2O3 и нанесенного на неё чувствительного слоя диоксида олова. Внутри тубы проходит нагревательный элемент, который нагревает чувствительный слой до температуры, при которой он начинает реагировать на определяемый газ. При попадании газа в датчик, происходит абсорбция газа и в следствие чего сопротивление датчика падает. За пару сотен рублей можно приобрести на выбор нужный из датчиков серии MQ.

Для работы датчика необходим нагрев. Однако, это всё миниатюрное, поэтому ощутимого нагрева сенсора вы не почувствуете. Сигнал, конечно, аналоговый. Датчики надежны и вполне долговечны, если их не использовать в агрессивных условиях. Хорошее быстродействие, короткое время восстановления. Однако, у таких датчиков не очень хорошая селективность, а также им требуется калибровка. Но это дает возможность позабавиться с ним не стандартно!

Не спортивное использование. 18+

Такое использование случилось благодаря дню рождения одного из сотрудников, которое мы решили слегка отметить в узком кругу. Собрались в небольшой переговорной комнате к концу рабочего дня. Компания из четырех человек выпивала коньяк. Примерно через час в помещении, где в этот момент уже было прилично выпито спиртного, начали раздаваться сигналы устройства, которое было включено в розетку. Это взбодрило присутствующих. Однако, любое приближение выпившего человека с желанием подуть на девайс мгновенно вызывало сирену и бурный смех. Таким образом, из устройства можно сделать и алкотестер. Это неудивительно. Датчики серии MQ в бОльшей или меньшей степени чувствительны к разным газам. Это хорошо иллюстрирует график чувствительности датчиков для различных газов.

Читайте также:
Варианты отделки сайдингом дома

Позже было выяснено, что 50 грамм крепкого спиртного (коньяка) в течение 3-4 часов вызывает сирену при выдохе в течение 5 секунд на датчик устройства.

Теперь о курении. Так как в табачном дыму уже запредельная концентрация СО, устройство мгновенно реагирует на табачный дым. Поэтому в курилке буквально через минуту включается сирена. Также был проведен эксперимент с курящими и некурящими сотрудниками. Продувка через трубочку 10 секунд.

Эталоном некурящего человека была выбрана замечательная девушка с красивым именем Люсьена, которой не удавалось выдуть более 2 единиц на устройстве. Курильщик выдувает 8-9 единиц. Буквально драконий выхлоп.

Выводы

Устройство рабочее. Из хорошего — отличный дизайн, надежность. Думаю, купив такое устройство, можно сделать оригинальный не шаблонный подарок для того, кто использует газ на кухне или отапливает им дом. Малое потребление энергии. Очень высокая чувствительность. Сирена на всю катушку включается при концентрациях более 0,2% от взрывоопасной. Есть достаточное количество времени отреагировать на утечку газа. С другой стороны — слабая селективность. Устройство может давать ложные срабатывания. Также необходимо внимательно отнестись к месту установки. Конечно, хотелось бы иметь беспроводной протокол передачи данных с устройства, было бы куда интересней. Ну а в целом девайс, безусловно, полезный.

Детектор для обнаружения утечки газа на Arduino

Сжиженный нефтяной газ (LPG – liquified petroleum gas) используется сейчас в большинстве домохозяйств, однако его утечка может привести к тяжелым последствиям. Для предотвращения и обнаружения утечек этого газа разработано достаточно большое число разнообразных устройств. В этой статье мы разработаем детектор обнаружения утечки данного газа на основе платы Arduino. При обнаружении утечки газа детектор будет выдавать сигнал тревоги в виде звукового сигнала.

Детектор для обнаружения утечки газа на Arduino: внешний вид

Мы будем использовать модуль обнаружения сжиженного нефтяного газа для обнаружения его утечки. При утечке газа этот модуль будет выдавать импульс высокого напряжения на своем контакте DO. А плата Arduino будет периодически проверять сигнал на этом контакте и когда она обнаружит на нем сигнал высокого уровня, то она будет высвечивать на экране жидкокристаллического (ЖК) дисплея сообщение “LPG Gas Leakage Alert” (тревога – утечка газа) и включать звонок (зуммер), который будет звенеть до тех пор пока не прекратится утечка газа. А когда модуль обнаружения утечки газа будет выдавать сигнал низкого уровня на своем контакте, то Arduino будет показывать на дисплее сообщение “No LPG Gas Leakage” (нет утечки газа).

Схема работы устройства представлена на следующем рисунке.

Необходимые компоненты

  1. Плата Arduino Pro Mini (купить на AliExpress).
  2. Модуль обнаружения утечки газа MQ3 (купить на AliExpress).
  3. Зуммер (буззер) (купить на AliExpress).
  4. Транзистор BC547 (купить на AliExpress).
  5. ЖК дисплей 16×2 (купить на AliExpress).
  6. Резистор 1 кОм (купить на AliExpress).
  7. Макетная плата.
  8. Батарейка на 9 В.
  9. Соединительные провода.

Модуль обнаружения утечки газа

Внешний вид модуля обнаружения утечки газа

Этот модуль содержит датчик MQ3, который способен обнаруживать сжиженный нефтяной газ, и компаратор (LM393) для сравнения выходного напряжения датчика MQ3 с опорным напряжением. Потенциометр используется для управления чувствительностью модуля. Этот модуль достаточно легко подсоединить к плате Arduino, а в иностранных интернет магазинах его также достаточно легко приобрести введя там в строке поиска запрос “LPG Gas Sensor Module”. Его также можно сконструировать самостоятельно используя датчик MQ3 и компаратор LM358 или LM393.

Читайте также:
Какой краской покрасить деревянный дом снаружи

Работа схемы

Схема устройства представлена на следующем рисунке.

На представленной схеме можно увидеть плату Arduino, модуль обнаружения утечки газа, звонок и ЖК дисплей 16×2. Arduino контролирует весь процесс функционирования устройства: считывание сигнала с выхода модуля обнаружения утечки газа, передача сообщений в ЖК дисплей и включение звонка. Чувствительность модуля обнаружения утечки газа можно отрегулировать с помощью потенциометра, присутствующего на нем.

Контакт DO модуля обнаружения утечки газа непосредственно соединен с контактом 18 (A4), а его контакты Vcc (питание) и GND (земля) соединены с контактами Vcc и GND Arduino. Модуль обнаружения утечки газа включает в своем составе датчик MQ3, который непосредственно обнаруживает сжиженный нефтяной газ (LPG). Этот датчик включает нагревательный элемент, которому нужно нагреться до определенной температуры чтобы датчик стал функционировать должным образом. Обычно этот процесс занимает около 15 минут. Компаратор в составе модуля обнаружения утечки газа используется для конвертации аналогового значения с выхода датчика MQ3 в цифровое. ЖК дисплей 16×2 соединен с платой Arduino в 4-битном режиме. Управляющие контакты RS, RW и En напрямую подсоединены к контактам 2, GND и 3 Arduino. Контакты для передачи данных D4-D7 подсоединены к контактам 4, 5, 6, 7 Arduino. Звонок подключен к контакту 13 Arduino через транзистор NPN BC547, в базу которого включен резистор сопротивлением 1 кОм.

Исходный код программы

В тексте программы мы будем использовать функцию считывания значений с цифрового выхода Arduino чтобы считывать значение с цифрового выхода модуля обнаружения утечки газа и потом выполнять необходимые управляющие действия. Эта последовательность действий программируется следующим кодом:

Код программы при подаче сигнала тревоги об утечке газа

Для тестирования работоспособности устройства мы будем использовать сигарету, содержащую сжиженный нефтяной газ. Далее представлен полный код программы.

#include // подключение библиотеки для работы с ЖК дисплеем
LiquidCrystal lcd(3, 2, 4, 5, 6, 7); //контакты, к которым подключен ЖК дисплей
#define lpg_sensor 18 // контакт, к которому подключен модуль обнаружения утечки газа
#define buzzer 13 // контакт, к которому подключен звонок
void setup()
<
pinMode(lpg_sensor, INPUT); // на ввод данных
pinMode(buzzer, OUTPUT) ; // на вывод данных
lcd.begin(16, 2);
lcd.print(“LPG Gas Detector”);
lcd.setCursor(0,1);
lcd.print(“Circuit Digest”);
delay(2000);
>
void loop()
<
if(digitalRead(lpg_sensor) ) //если на выходе модуля обнаружения утечки газа сигнал высокого уровня
<
digitalWrite(buzzer, HIGH);
lcd.clear();
lcd.print(“LPG Gas Leakage”);
lcd.setCursor(0, 1);
lcd.print(” Alert “);
delay(400);
digitalWrite(buzzer, LOW);
delay(500);
>
else
<
digitalWrite(buzzer, LOW);
lcd.clear();
lcd.print(” No LPG Gas “);
lcd.setCursor(0,1);
lcd.print(” Leakage “);
delay(1000);
>
>

Как устроены и работают датчики утечки газа

В новостных сводках нет-нет да и проскакивают иногда сообщения о том, что в каком-нибудь городе в подъезде жилого дома взорвался газ или случился пожар. Как правило, причиной оказывается утечка горючей газовой смеси, состоящей в основном из метана с добавками (пропана, бутана и т. д.), используемой в газовых плитах и газовых котлах.

Хорошо бы предотвратить на корню эти несчастья, однако то и дело горючие газы распространяются, концентрируются в помещениях и приводят к взрывам и пожарам. Всему виной человеческая недальновидность и несовершенство техники.

Как устроены и работают датчики утечки газа

Решение проблемы

А между тем существует способ предотвращения подобных ситуаций или хотя бы сведения их разрушительных последствий к минимуму. Способ заключается в том, чтобы установить в помещении датчик утечки газа. Датчик автоматически определит факт превышения в воздухе концентрации потенциально опасного газа, обнаружит таким образом событие утечки и выполнит необходимые действия для предотвращения катастрофических последствий.

Читайте также:
Какой теплый пол выбрать под плитку

Действия датчика при обнаружении газа могут быть самыми разнообразными: подача звукового сигнала в помещении где он установлен, отправка SMS-сообщения на телефон хозяину, включение вытяжной вентиляции или звонок в службу спасения, перекрытие газового трубопровода и т. д. В любом случае благодаря датчику будет понятно, что случилась утечка газа и нужно предпринимать активные действия вплоть до эвакуации жильцов.

Простые датчики

Простейшие домашние датчики способны обнаружить превышение допустимой концентрации нескольких основных видов горючих газов и подать звуковой сигнал. Такие изделия компактны, их легко установить в любом подходящем месте.

Датчики данного типа предназначены для жилых помещений, где человек точно услышит звуковой сигнал и уже будет знать что делать — перекрывать клапан, звонить в аварийную службу, предпринимать эвакуацию и т.д.

Беспроводные датчики

Датчики с беспроводным блоком связи способны работать совместно с GSM-сигнализацией. И как только утечка газа зафиксирована чувствительным элементом — хозяину на телефон придет SMS-уведомление и он сможет успеть самостоятельно предотвратить утечку. К тому же совместная работа данного датчика с блоком сигнализации позволяет синхронизировать его со схемой включения пожарных сирен.

Датчики управляющие запорной арматурой

Более сложные устройства умеют управлять запорной арматурой — электромагнитным клапаном, который автоматически будет переведен в положение «закрыт», как только датчик заподозрит неладное. Человеческий фактор сведен здесь к минимуму.

Системы подобного типа бывают как бытового, так и промышленного назначения, для установки на промышленных объектах, в цехах, лабораториях, в складских помещениях и т. д. Датчики с запорной арматурой обычно монтируют к газовым колонкам и бойлерам. Если датчик сработал, перевести запорный клапан в исходное положение можно будет лишь вручную.

Газовая плита во время работы

Устройство датчика утечки газа

По принципу действия датчики утечки газа бывают разных типов: оптические, термические, электронные. И для каждого типа характерны свои целевые группы газов, повышенные концентрации которых датчик способен обнаруживать: смесь на основе природного газа, углекислый газ, угарный газ и т.д.

В корпусе устройства находится источник питания — аккумулятор или батарейка, либо источник питания может быть внешним – сетевым.

За взаимодействие датчика с газообразной внешней средой отвечает чувствительный элемент первичного преобразователя, характеристика которого, например электрическая проводимость, изменяется под действием газа повышенной концентрации.

Сигнал с первичного преобразователя сравнивается в измерительном модуле устройства с сигналом эталонной величины, имитирующим допустимую концентрацию газа. В результате измерений исполнительный механизм датчика либо активируется, либо — нет.

Выбор места установки датчика утечки

При всем при этом датчики утечки газа не являются универсальными. Каждый датчик нацелен на свою группу улавливаемых газов. Это связано с тем, что некоторые газы тяжелее воздуха (углекислый газ) и всегда текут вниз — к полу помещения, а другие легче воздуха (метан) и поэтому скапливаются под потолком, третьи же способны заполнить пространство помещения целиком (угарный газ). Поэтому и место установки датчика выбирается соответствующим образом. Датчики природного газа устанавливают под потолком, а датчики углекислого газа — над полом.

Места установки датчиков следует выбирать очень внимательно. Недопустимо располагать датчик утечки газа возле хорошо проветриваемых мест (окон, вентиляционных каналов и т.д) — возле них воздух окажется менее всего насыщен газом во время утечки.

Датчик утечки устанавливается недалеко от газовой плиты, баллона, колонки и т. д, но не на самом газовом оборудовании. В помещениях где используются аэрозоли, анализатор будет функционировать некорректно, равно как и в помещениях где циркуляция воздуха отсутствует начисто.

Читайте также:
Схема подключения радиаторов отопления

Датчик утечки газа

Принципы работы датчиков утечки газа

Датчики утечки газа различаются и по принципу работы чувствительного элемента. Есть датчики, где чувствительным элементом выступает кремниевая пластина с тонким слоем оксида металла на поверхности.

У данных датчиков газ при определенной концентрации поглощается чувствительным элементом сильнее и проводимость элемента поэтому изменяется больше. Эти датчики подходят для жилых помещений. Они хоть и не являются высокоточными в силу своего устройства и инерционности (долго реагируют и медленно восстанавливаются), зато весьма просты и стоят недорого. Для промышленности (цехов, лабораторий, складов и т.д.) они не подойдут.

Существуют каталитические датчики, где процесс обнаружения газа основан на его «сгорании» и превращении в углекислый газ и воду. Воздух с высоким содержанием газа проходит через чувствительный элемент, представляющий собой маленькую катушку из платиновой проволоки, покрытую оксидом алюминия, и с родиевым катализатором снаружи.

Когда воздух с высоким содержанием газа контактирует с катализатором, происходит своеобразное воспламенение, платиновая проволока нагревается, ее сопротивление изменяется. Чем выше концентрация газа в воздухе — тем сильнее разогревается проволока, тем более растет ее сопротивление. Такие датчики характеризуются высокой точностью и скоростью срабатывания. Они подходят для промышленных применений.

Поистине лабораторным методом диагностики воздуха является применение инфракрасных датчиков утечки. В промышленных анализаторах газа используется именно этот принцип.

Суть в том, что для многих газов полоса пропускания света приходится на инфракрасный диапазон. Два луча с одинаковой длиной волны проходят через две разные среды — через исследуемую и через эталонную. Возвращаясь назад, лучи уже различаются по силе, и разность, оцениваемая детектором, как раз и оказывается пропорциональна концентрации газа в исследуемой среде.

Устройство и конструкция датчиков утечки газа

Проводные и беспроводные датчики

Проводные датчики утечки питаются от сети 220 вольт. Именно такие датчики используют в промышленности несмотря на их высокое энергопотребление. Они просты в обслуживании и пожаробезопасны даже несмотря на наличие внутри устройства электрической цепи далеко не низкого напряжения. Тем не менее они полностью зависимы от розетки.

Беспроводные датчики питаются от встроенных аккумуляторов, поэтому их можно устанавливать даже там где нет сети. Но для промышленности они не подойдут, так как эксплуатационный расход энергии здесь довольно значителен.

Эксплуатация и тестирование

Хотя бы раз в месяц датчик необходимо протирать влажной салфеткой чтобы убрать пыль. Вместо салфетки можно воспользоваться пылесосом. Для проверки датчика утечки природного газа подойдет простая зажигалка (на несколько секунд пустите газ из зажигалки на датчик, но не зажигайте пламя). После проверки автоматического запорного клапана вручную верните его в исходное положение.

Подключение датчика газа MQ2 Ардуино

Подключение датчика газа MQ-2 к Arduino

Датчик MQ-2 Ардуино позволяет выявлять в воздухе минимальную концентрацию водорода и углеводородных газов (пропан, метан, бутан). Применяют сенсоры MQ-2 в проектах умного дома для своевременного обнаружения газа или дыма. Сенсор относится к семейству датчиков MQ, которые отличаются низкой стоимостью, простотой использования и легкостью подключения к микроконтроллеру Ардуино.

Датчик утечки газа MQ2 на Ардуино

Принцип сенсора основан на детекторе, изготовленного из сплава оксида олова и алюминия, который в процессе работы сенсора существенно нагревается. В результате химической реакции, происходящей при попадании молекул углеводородных газов на чувствительный элемент, изменяется сопротивление сенсора. Измеряя изменения сопротивления, можно узнать точное значение концентрации газа в воздухе.

При измерении газов, термин «концентрация» используется для описания количества газа в воздухе по объему. Наиболее распространенными единицами измерения являются доли на миллион и процентная концентрация. Доли на миллион (ppm) — это отношение одного газа к другому. Например, концентрация 1000 ppm CO означает, что на 999 000 молекул газа, 1000 из них будут относится к углекислому газу.

Читайте также:
Экономичная кладка кирпича своими руками

Характеристики датчика MQ2 Ардуино

  • Питание: 5 Вольт;
  • Потребляемый ток: 180мА;
  • Чувствительность: 300-10000 ppm;
  • Рабочая температура: от -10 до +50 °C;
  • Влажность воздуха: не более 95%;
  • Интерфейс: аналоговый и цифровой.

Схема и распиновка датчика газа MQ2

Распиновка датчика MQ2

Распиновка сенсора утечки газа MQ2 на Ардуино

Напряжение аналогового выхода изменяется пропорционально концентрации дыма или газа. Чем выше концентрация газа, тем выше выходное напряжение. Логический сигнал можно откалибровать, держа датчик рядом с дымом, который вы хотите обнаружить. Далее вращайте потенциометр по часовой стрелке (для увеличения чувствительности сенсора), пока не загорится красный светодиод на модуле.

Как подключить датчик MQ2 к Ардуино

Для этого занятия потребуется:

  • Arduino Uno / Arduino Nano / Arduino Mega;
  • датчик газа MQ2;
  • макетная плата;
  • светодиод;
  • резистор 220 Ом;
  • провода «папа-папа», «папа-мама».

Схема подключения датчика MQ2 к АрдуиноСхема подключения датчика MQ2 к Ардуино Уно

MQ2 Arduino Uno Arduino Nano Arduino Mega
GND GND GND GND
VCC 5V 5V 5V
OUT A1 A1 A1

Рассмотрим несколько вариантов кода для сенсора. Первый вариант — без библиотеки и еще два примера с библиотеками MQ2.h и TroykaMQ.h от Амперки. Обе библиотеки можно скачать на нашем сайте здесь. Обратите внимание, что при установке сразу двух библиотек будет происходить конфликт и Arduino IDE выдаст ошибку при компиляции. Загрузите первый пример, после сборки схемы, представленной на картинке выше.

Скетч. Применяем датчик MQ2 без библиотеки

Пояснения к коду:
  1. в этом примере необходимо будет откалибровать датчик, т.е. настроить включение светодиода при заданном пороге концентрации газа. При этом датчик не распознает газы, поэтому лучше использовать библиотеки для MQ2.

Датчик широкого спектра газов MQ-2

Датчик широкого спектра газов MQ-2 и Ардуино

Для следующего примера следует переключить пин A1 на логический порт сенсора газа (цифровой сигнал). Если вы используете датчик широкого спектра газов MQ-2 от компании Амперка, то подключите его к микроконтроллеру, согласно схеме. При этом у сенсора должен быть включен нагрев (замкнута перемычка на плате датчика). После подключения датчика к Arduino, загрузите следующую программу в плату.

Скетч. Подключение датчика с библиотекой MQ2.h

Пояснения к коду:
  1. информация с датчика выводится на монитор порта Arduino IDE;
  2. порог включения светодиода можно изменить в операторе if и настроить программу на определение концентрации другого газа (в примере указан CO).

Скетч. MQ2 от Амперки с библиотекой TroykaMQ.h

Пояснения к коду:
  1. в представленном примере информация по концентрации газов выводится в последовательный порт, без включения светодиода;
  2. сенсор должен находится в режиме постоянного нагрева (перемычка замкнута).

Заключение. MQ2 — один из наиболее часто используемых датчиков газа в серии датчиков MQ Arduino. Модуль отлично подойдет для проектов, где требуется создать систему мониторинга качества воздуха в помещении. Способен обнаружить газ при концентрации в воздухе от 200 ppm. Все возникшие вопросы по подключению MQ2 к микроконтроллеру Ардуино и скетчам, оставляйте в комментариях к записи.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: