Дистанционный переключатель своими руками: интересное устройство

Устройство, виды и принцип работы пультов и блоков дистанционного управления освещением

Беспроводное управление освещением практически ежедневно набирает популярность в быту, общественных заведениях и на предприятиях. Причем наиболее востребовано сейчас дистанционное управление по радиоканалу, WiFi и интернету. Благодаря такому подходу удается управлять домашним и уличным освещением из другого города или страны.

Поэтому в данной статье будут детально разобраны оговоренные выше способы управления светом, но не будут рассматриваться системы с фотоэлементами, автоматами и ИК, потому что они неудобные и несовременные.

Способы дистанционного управления

Дистанционное управление светом бывает проводным и беспроводным, ручным и автоматическим, при этом чаще всего работает за счет инфракрасных, микроволновых, радиочастотных, звуковых и ультразвуковых волн. Но мы будем рассматривать самые удобные и наиболее популярные варианты дистанционного управления светом.

Сложный: Управление по радиоканалу

Самым эффективным способом считается радиочастотное управление.

Благодаря такому управлению удается:

  • Осуществлять включение и выключение света с помощью пульта ДУ, ПК, телефона и остальных мобильных гаджетов;
  • Увеличить радиус действия радиоканала до 100 м;
  • Использовать в работе усилитель сигнала для более точного управления.

В такую систему управление светом входят такие элементы:

  • Пульт ДУ;
  • Аккумулятор;
  • Контроллеры управления, входящие в исполнительный блок управления.

Продуманная конструкция исполнительного блока позволяет устанавливать его в более подходящем месте (в люстре, в распределительном ящике или в розетке). Благодаря такому расположению исполнительные элементы системы прячут от посторонних глаз. С его помощью удается управлять любыми типами ламп, причем не только одним светильником, но и группой.

Как сделать дистанционное управление светом своими руками

Всем доброго времени суток дорогие друзья! В сегодняшней статье я бы вам хотел показать довольно интересную и простую самоделку, а именно дистанционный выключатель. Для него нам понадобиться минимум материала и самое главное, что нам абсолютно не потребуется ардуино. Данную самоделку можно приспособить не как выключатель света, а как дистанционное управление воды в кране или даже управление щеколды. На что только хватит у вас фантазии. В качестве комплектующих будут взяты самые дешёвые материалы с китайских магазинов и местных радио рынков.

В общем, сегодня мы рассмотрим, как можно сделать простейшее электронное устройство, для управления светом в комнате. Ну, не будем тянуть с долгим предисловием, погнали!

И так, для данной самоделки нам понадобится:

— электродвигатель с редуктором. — батарейка на 9V формата крона. — плата управления и пульт управления от самой простой радиоуправляемой машины. — конектор для батарейки. — переходник для вала редуктора электродвигателя. — металлическая проволока диаметром 2-4 мм и длинной не более10-12 см. — МДФ или обычную деревянную дощечку примерно 10см на 5 см.
Из инструментов нам также понадобится:
— терма клей. — супер клей. — отвертка. — паяльник. — плоскогубцы. Первым делом нам необходимо вырезать из деревянной дощечки или МДФ панели основную часть, на чем и будет собираться конструкция размером примерно 10 см на 5 см.

Для следующего шага нам понадобится электродвигатель с редуктором, который можно приобрести в китайском интернет магазине или на любом радиорынке. Взятый нами электродвигатель следует приклеить в середину деревянного основания, которое подготовили ранее. Клеить следует при помощи супер клея.

Затем нам пригодится самая простая плата управления, её можно взять от самой простой и дешёвой радиоуправляемой машины, которая может ездить только вперёд и назад, этих способностей платы нам хватит.

Плату управления при помощи терма клея следует приклеить к деревянному основанию.

После чего нам следует припаять к электродвигателю провода «+» и «-» от платы управления. В нашем случае это зелёный и жёлтый провод.

Затем нам понадобится конектор кроны, который можно купить в магазине или сделать самому. Такой коннектор можно сделать из старой батарейки формата крона, просто разобрав её и отпаяв от самого конектора провода. К конектору припаиваем «+» и «-» от платы управления, это черный и красный провод. И для герметичности соединения зальём место пайки терма клеем.

Взяв терма клей, приклеим конектор в указанное место (смотреть фото ниже).

Для следующего шага нам понадобится подобная деталь (смотреть фото ниже). Это подобного рода переходник, который надевается на вал редуктора электродвигателя. Своего рода переходник обычно используют для изготовления самодельных мини дрелей и бор машинок.

Устанавливаем взятый переходник на вал редуктора электродвигателя, при этом, не забыв зафиксировать его на винтовое соединение, просто затянув отверткой. Взяв проволоку, и плоскогубцы изготовим зигзагообразную заготовку, которую в свою очередь нужно закрепить в переходнике.

Вставляем батарейку на своё место и проверяем работоспособность конструкции. У нас должно получиться так, чтобы при нажатии на одну из кнопок электродвигатель вращался в одну сторону, а при нажатии другой кнопки соответственно в другую сторону.

Устанавливаем конструкцию вблизи выключателя, так чтобы механизм мог включать и выключать свет. Готово.

Читайте также:
Вихревой теплогенератор своими руками: экономим деньги

В итоге у нас получилась простая и очень надёжная конструкция, которую можно взять за основу и использовать в другой сфере как я уже упомянул, например, для открытия и закрытия винтового крана. Думаю, многим понравится данная простая самоделка, особенно технарям и любителям сделать, что то самому.

Вот подробное видео от автора со сборкой и исправлениями данной самоделки:

Ну и всем спасибо за внимание и удачи в будущих проектах самодельщики!

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Плюсы и минусы управления освещением на расстоянии

  • экономный расход электроэнергии;
  • удобство пользования, особенно если нужно контролировать освещение в нескольких точках;
  • легкость монтажа – не требуется ломать стены и прокладывать отдельную ветвь электропроводки;
  • возможность сопряжения с диммером для плавного включения света;
  • экономия расходных материалов – для беспроводной системы ну требуются провода и кабели;
  • комфортный процесс включения и выключения света;
  • пользователь не подвержен аварийному отключении питания- сенсорный шкаф и автомат соединяются по радиоволнам, и управление освещением производится без подключения к локальной сети;
  • безопасность – дистанционные выключатели освещения работают от маленьких значений силы тока, которая не является опасной для человека;
  • возможность управления подсветкой как с ПДУ, так и со смартфона или планшета с установленной программой;
  • наличие эффекта присутствия помогает обезопасить квартиру от проникновения взломщиков.

Недостатки дистанционного управления освещением:

  • стоимость подобных приборов несколько выше, чем у стационарных выключателей;
  • могут возникнуть проблемы, связанные с плохим сигналом Wi-Fi или его отсутствием, севшей батарейкой в ПДУ;
  • сложность настройки – требуется соблюдать строгие правила, иначе будут погрешности при работе устройства;
  • требуется точная корректировка условий срабатывания;
  • возможность ложного срабатывания – для удаления этого эффекта приходится разрабатывать системы с несколькими датчиками.

Дистанционный выключатель света на основе лазера

Эта простая схема дистанционного выключателя построена на таймере NE555. В качестве управляющего элемента использована лазерная указка. Эта схема была опробована в работе с расстояния 50 метров и показала хорошие результаты. По большому счету дальность действия зависит от мощности и качества самого лазера. Электрическая схема дистанционного выключателя:

При наведении лазерного луча на фоторезистор U1 происходит включение нагрузки через электромагнитное реле, а при фокусировке лазерного луча на фоторезистор U2 — выключение.

Описание работы системы дистанционного управления на ИК лучах

Для дистанционного управления приборами применяется следующий механизм. На ПДУ нажимают и держат произвольную кнопку в течении 1 секунды. На непродолжительное нажатие (например во время управления музыкальным центром) система не откликается.

система дистанционного управления ик лучах

Для того, чтобы исключить отклик телевизора на управление приборами, необходимо выбирать не применяемые кнопки на ПДУ или применить пульт от выключенного в это время прибора.

Принципиальная схема дистанционного управления изображена на рисунке 1. Специальная микросхема DA1 усиливает и формирует электросигнал фотодиода BL1 в электроимпульсы. На радиоэлементах DD1.1 и DD1.2 построен компаратор, а на радиоэлементах DD1.3, DD1.4 — генератор импульсов.

Состояние системы управления (включена или выключена нагрузка) контролирует триггер DD2.1. В случае если на прямом выходе данного триггера лог 1, генератор будет функционировать на частоте примерно 1 кГц. На эмиттерах транзисторов VT1 и VT2 появятся импульсы, которые сквозь емкость С10 поступят на контролирующий вывод симистора VS1. Он будет отпираться в начале каждого полупериода сетевого напряжения.

В первоначальном положении на контакте 7 микросхемы DA1 находится лог 1, емкость С5 заряжена сквозь сопротивления R1, R2 и на входе С триггера DD2.1 лог 0. Если на фотодиод BL1 идут сигналы ИК излучения с пульта дистанционного управления, на контакте 7 микросхемы DA1 окажутся сигналы, и емкость С5 будет разряжаться сквозь диод VD1 и сопротивление R2.

Когда потенциал на С5 снизится до нижнего уровня компаратора (через 1 секунду или более), компаратор переключится и на ввод триггера DD2.1 поступит сигнал. Состояние триггера DD2.1 поменяется. Так совершается переключение приборов из одного состояния в другое.

плата ИК управления

Микросхемы DD1 и DD2 возможно использовать схожие из серий К564, К176. VD2 — стабилитрон на напряжение 8-9 вольт и ток более 35 мА. Диоды VD3 и VD4 — КД102Б или схожие. Оксидные емкости — К50-35; С2, С4, С6, С7 — К10-17; С9, С10 — К73-16 или К73-17.

Беспроводные выключатели света

Неудивительными сегодня являются и беспроводные выключатели света. Главным их преимуществом является то, что вам не придется долбить стены каждый раз, включая свет, следовательно, у вас не будет засаленных кругов на обоях.

Читайте здесь! Как выбрать крепеж для провода — подробная инструкция с примерами

Также его можно установить в абсолютно любом месте вашего дома или квартиры, практически не испортив дизайна стены. Он охватывает большие участки и способен контролировать весь дом.

Особо полезное его качество – минимальный заряд тока. Если вдруг у вас имеются дети, которым все интересно, то это устройство для вас. Даже если они его разберут, то ничего с ними не случится.

Само по себе устройство небольшого размера, закладывать его можно в сам осветительный прибор. Беспроводных выключателей достаточно немного, они подразделяются лишь на три признака: сколькими светильниками они могут управлять, способ управления и возможность регулировки осветительными приборами. Главная его особенность – легкая установка, не требующая сил профессионала.

Читайте также:
Металлоискатель своими руками: оригинальная идея

Инфракрасное и радиоволновое управление светом с пульта

Инфракрасное управление с ПДУ используется реже, чем системы, работающие по радиоканалу. ИК пульты доступны и просты в использовании, но у них есть ограничение по видимости. Прибор будет работать только на расстоянии 10 м в зависимости от мощности передатчика сигнала.

Система, работающая по радиоканалу, состоит из аккумулятора, контроллера ДУ и пульта автоматического управления. Пульт подает на сенсор импульс, от которого свет включается или выключается. Контроллер устанавливается в стену, осветительный прибор или под натяжным потолком. Спектр действия таких устройств широк, можно управлять даже из другой комнаты.

Выбор инфракрасных датчиков движения

В инфракрасном датчике находятся микросхемы, позволяющие устройству реагировать на инородные объекты. Сенсор очень чувствителен, и быстро откликается на новое движение. В системе используется несколько линз, от 20 до 60 штук. Чем их больше, тем выше чувствительность. Обычно у таких приборов зона охвата выше.

Интересно! Также дополнительно прибор с инфракрасным сенсором может быть оснащен ультразвуковым индикатором. Эффективность подобной системы возрастает.

Подключение инфракрасного датчика движения

Для управления светильниками дистанционный блок управления осветительным прибором включается в разрыв цепи. С помощью этого блока производится включение и выключение лампы при помощи обычного ПДУ от телевизора.

Устройство, виды и принцип работы пультов и блоков дистанционного управления освещением

Управление освещением без выключателя состоит из нескольких частей – самого светильника и инфракрасного детектора. Сон присоединяется к блоку питания – схема его подключения указывается в инструкции. На длинных участках (например, вдоль дороги во дворе и на улице) может использоваться несколько инфракрасных датчиков, подключенных параллельно.

Как собрать схему для управления нагрузкой при помощи любого пульта ДУ

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Управление теми или иными приборами или нагрузками с помощью ПДУ очень часто находят широкое применение как в производственных зданиях так и жилых. За частую это может быть дистанционное включение и выключение осветительных приборов, кондиционеров, вытяжек, гаражных ворот, и т д.
Такие устройства которые включаю либо выключают освещение или другую нагрузку на расстоянии обычно состоят из фотоприемника и излучающего диода работающих на инфракрасном диапазоне и состоят обычно из двух частей, сама плата управления с инфракрасным приемником и пульт дистанционного управления. Такое устройство можно с легкостью собрать собрать самому, плюс этой схемы в том, что она не содержит дорогих деталей и пультом дистанционного управления может служить любой пульт от старой техники телевизора видеомагнитофона и т д.

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Схема:

В качестве ИК приемника служит датчик LMS5360 это трех контактный ИК приемник который работает на частоте 38Кгц Когда датчик обнаружит ИК сигнал, то на выходе датчика будет присутствовать логический 0, этот сигнал очень слабый, далее он поступает и усиливает транзистором VT1. Затем этот сигнал поступает на ждущий мультивибратор микросхемы NE555 и запускает его.

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

С выхода микросхемы (вывод 3) сигнал поступает на вывод 3 микросхемы К561ТВ1А и переключает триггер, далее с выхода (вывод 1) сигнал поступает на базу транзистора VT2 который в свою очередь управляет реле. С каждым сигналом от таймера 555 триггер будет меняться соответственно реле будет срабатывать тем самым включать или отключать нагрузку.
Также в схеме предусмотрен светодиод HL1 который предусмотрен в качестве индикации, чтобы следить включено устройство или нет. При питании 5вольт резистор R5 можно исключить из схемы, учитывая то что если светодиод рассчитан на напряжения питания 2.5-3 вольта. Для того чтобы предотвратить таймер от ложного срабатывания в схеме предусмотрен резистор R4 и конденсатор С2.
Диод VD1 подключен параллельно катушке реле обратным включением для предотвращения скачков, всплесков ЭДС в противном случае без него в схему могут идти помехи которые пагубно влияют на маломощные транзисторы и чувствительные элементы.

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

О деталях:

  • В качестве ИК датчика можно использовать любой аналогичный работающий на частоте 38Кгц с тремя выводами как в моем случае от старого телевизора, важно учитывать распиновку этих датчиков.
  • Резисторы с R1-R6 мощностью 0,25 Ватт.
  • Конденсаторы С1,С3 электролитические напряжением не менее 16 вольт С2 керамический либо пленочный на 100 нано фарад С4 керамический или пленочный на 10 нано фарад.
  • Транзисторы VT1 VT2 кт3102 или аналоги BC184 BC182 2N4123 BC547.
  • Светодиод любой рассчитанный на напряжение 2.5-3 вольта.
  • Микросхема DD2 таймер NE555 или отечественный аналог КР1006ВИ1А.
  • Микросхема DD2 CD4027 или отечественный аналог К561ТВ1А.
  • Диод VD1 выпрямительный Кд522 или импортный 1N4004 14007.
  • Реле с напряжением катушки на 5 вольт и способностью коммутировать ток как в моем случае 3 ампера если потребности вырастают то ставить реле с большим током коммутации 5-10 ампер и т д.
Читайте также:
Ролик для занятия фитнессом своими руками: экономим 3 тысячи рублей

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Плюсы:

На холостом ходу устройство потребляет 3 Ма, что позволяет питать устройство от 3 пальчиковых батареек. При работающем режиме ток потребления устройства составляет около 36-37 Ма.

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Способность коммутировать мощную нагрузку как от постоянного или переменного тока 220 вольт. Габариты устройства печатная плата с размерами 9,5 на 3 см. Дальность действия составляет 10 метров.

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Как собрать схему для управления любой нагрузкой при помощи любого пульта ДУ

Смотрите видео

Сенсорный выключатель света: как выбрать и сделать своими руками

Идея управления осветительными приборами посредством сенсорных выключателей не нова, подобные выключатели или переключатели света выпускались еще в прошлом веке. Но размеры таких устройств были существенно больше типовых, что вызывало проблемы при установке. Стоит также отметить, что стоимость первых сенсорных коммутаторов была довольно велика, естественно, это не способствовало популярности. С развитием технологий ситуация в корне изменилась, и сегодня емкостные, инфракрасные и дистанционные включатели пользуются стабильным спросом.

Конструкция и принцип работы

Несмотря на разнообразие моделей сенсорных коммуникаторов, большинство из них имеет типовую конструкцию, состоящую из следующих элементов:

  1. Корпус из термостойкого пластика (см. А на рис. 1). Размеры конструкции позволяют производить монтаж в типовое посадочное место обычного выключателя.
  2. Электронный блок (В), он включает в себя адаптер питания и схему управления полупроводниковым ключом.
  3. Плата с емкостными сенсорами (С).
  4. Лицевая панель (D), как правило, она изготавливается из кварцевого стекла, в бюджетных моделях могут использоваться другие материалы.

Теперь расскажем, как работают такие устройства. Электронный блок отслеживает состояние сенсора. Когда происходит прикосновение рукой к определенному месту лицевой панели выключателя (оно имеет соответствующую маркировку), емкость датчика изменяется. Электронный блок обнаруживает это и меняет состояние бесконтактного полупроводникового ключа, который размыкает или замыкает электрическую цепь.

Сфера применения

Первоначально данный вид коммутаторов планировалось использовать для включения / выключения освещения, но конструкция оказалась настолько удачной, что сфера ее применения существенно расширилась. Сегодня большинство современных бытовых приборов имеют сенсорное управление, в качестве примера можно привести кухонные печи, вытяжки, микроволновки и т.д.

Вытяжка для кухни Cata Midas 900

Вытяжка для кухни Cata Midas 900

Единственное ограничение на подключение к сенсорным коммутаторам — мощность оборудования, ее допустимые параметры указываются в паспорте устройства.

Дополнительные функциональные возможности

Современная техническая база сделала возможным установку микроконтроллеров в электронный блок управления сенсорным выключателем, позволило существенно расширить функционал коммутаторов и позволило им вписаться в концепцию умного дома. Управлять такими коммутаторами можно голосом, инфракрасным или радио пультом, смартфоном через WI-FI или программируемым таймером.

Сенсорный выключатель можно подключить в системе «умный дом»

Сенсорный выключатель можно подключить к системе «умный дом» и управлять им используя мобильный телефон

Сенсорные коммутаторов могут использоваться совместно с датчиками, реагирующими на движение или уровень освещенности. В первом случае такие устройства включают светильник, настольную лампу или другие осветительные приборы, когда кто-нибудь входит в помещение, например в ванную. При втором варианте реализации, свет будет включаться при низком уровне освещения.

Тройной сенсорный коммутатор Sesoo

Тройной сенсорный коммутатор Sesoo и датчики движения

Некоторые производители, например, Livolо выпускают сенсорные выключатели с функцией диммера или управляющие совмещенными розетками, к которым может подключаться практически любой бытовой прибор.

Сенсорный выключатель Ливоло

Сенсорный выключатель Ливоло с блоком розеток

Достоинства емкостных коммутаторов

Говоря о преимуществах данного вида включателей, следует отметить их следующие качества:

Выключатели «Зайцы» модельный ряд Kopou

  • Длительный срок эксплуатации. Этому немало способствует отсутствие движущихся частей и контактных групп.
  • Совместимость со всеми типами осветительных приборов. Выпускаются модели с диммиром для светодиодных лент и энергосберегающих ламп, если у таковых предусмотрена такая возможность. Помимо этого допускается коммутация любых цепей, отвечающих условиям эксплуатации выключателей
  • Наличие дополнительных функций.
  • Возможность интеграции в систему «Умный дом».
  • Большой выбор цветовых и дизайнерских решений. Выключатели «Зайцы» модельный ряд Kopou
  • Отсутствие механических контактов.
  • Сенсорный датчик можно установить в стандартный «стакан» для выключателя скрытой проводки.

Теперь кратко о недостатках. В первую очередь необходимо отметить, разницу в стоимости с обычными механическими выключателями, но она стала значительно меньше, чем 10-20 лет назад. Цена недорогих китайских сенсорных моделей сегодня значительно дешевле, чем на механические выключатели известных брендов, например GTS или Electronics.

Иногда наблюдается мерцание светодиодных ламп, подключенных к сенсорным включателям. Это может быть связано как с низким качеством самих источников освещения, так и бюджетными моделями коммутаторов. Проблему можно устранить двумя способами:

  1. Использовать продукцию известных брендов (Jazzway, Panasonic, Сапфир, Funry, LightaLight, Tronic , Sesso и т.д.).
  2. Подключить параллельно светодиодной лампе конденсатор на 0,1 мкф 630 В.

Подключение

Монтаж сенсорных коммутаторов практически не отличается от установки обычных встроенных и накладных механических выключателей. Подробно об этом процессе можно прочитать на страницах нашего сайта. Напомним, как это делать на примере модели kg020gs производителя FD Electronics.

Алгоритм подключения:

Первый и второй этап подключения

  1. Снимаем стеклянную панель (см. А рис. 7). Это удобно делать, используя тонкую шлицевую отвертку.
  2. Производим подключение монтажных проводов (В рис. 7), согласно схеме приведенной в паспорте. Рисунок 7. Первый и второй этап подключения
  3. Прикручиваем плату с сенсорными контактами (А рис. 8).
  4. Подключаем панель с маркировкой кнопки (В рис. 8).
Читайте также:
Как развести краску с окислителем

Некоторые производители, например, Livolo, выпускают проходные выключатели на 220 В (схема их подключения показана на рис. 9). С их помощью можно управлять освещением из нескольких мест.

Подсоединение нескольких проходных панелей touch

Рисунок 9. Наглядный пример, как подсоединить несколько проходных панелей touch контакта

Каждый из таких коммутаторов управляет освещение в помещении из разных мест. Концепция подразумевает использование основного коммутатора и одного вспомогательного (или более). На основных приборах имеется три клеммы, к одной подключается фаза, к другой ноль, а третьей подключается управляющий проводник. Соответственно, такие контакты помечаются как: L – фаза, N –ноль и Com – управляющий провод. Вспомогательные устройства

Вторичные коммутаторы подключаются через две клеммы: N – ноль и Com – управляющий контакт. Маркировка у разных производителей может различаться, поэтому, имеет смысл изучить инструкцию. В качестве примера можно привести схему подключения электронного диммера et0802193e, или его аналог tt6061a, управлять которыми можно легким касанием руки.

Схема подключения сенсорного диммера et0802193e

Схема подключения сенсорного диммера et0802193e

Выбор сенсорного выключателя света

Перед тем, как приобретать устройство, необходимо определиться с его функциональностью. Для этого необходимо учитывать следующие критерии:

  1. Мощность подключаемого оборудования и схема его подключения.
  2. Исполнение, соответствующее типу проводки.
  3. Условия эксплуатации (если планируется установка в ванной комнате, то подбирается устройство с влагозащитой).
  4. Возможность дистанционного управления (пульт или смартфон).
  5. Соответствие дизайна интерьеру помещения и т.д.

Определившись с основными задачами, можно приступать к выбору производителя. Естественно, что следует отдать предпочтение известным брендам, продукция которых отличается надежностью. Но при этом необходимо учитывать наличие в модельном ряде коммутаторов устройств с нужными функциями. Например, у Delumo имеются устройства управляемые радио пультом, а Sonoff специализируется на Wi-Fi устройствах, светильники Capsens Domuns Line «заточены» только под свои сенсорные коммутаторы и т.д. Нюансов может быть множество, поэтому рекомендуем детально изучить различные варианты.

Исходя из практического опыта, помимо известных брендов, таких как Легранд можно порекомендовать Vento Electriс, Wemmon, Fanri, Merten, CGSS, Steu, Шнайдер, Аристон и т.д.

Беспроводной сенсорный выключатель MakeGood Classic

Беспроводной сенсорный выключатель MakeGood Classic с пультом управления и подсветкой

Рекомендуем отслеживать обзоры в сети, где публикуются рейтинги лучших производителей. Критерии отбора производятся как по модельному ряду производителей, с учетом функциональности и стоимости, так и по другим показателям.

Доработка типовых устройств

Многих не устраивает, что сенсорная зона на панели довольно маленькая, и для фиксации сигнала необходимо сделать касание в указанном месте. Приведем пример, как можно увеличить площадь косвенного контакта поверхности.

Увеличение зоны чувствительности сенсора

Увеличение зоны чувствительности сенсора

Следует взять провод и аккуратно припаять его к месту, где подается сигнал с датчика на сенсорной плате (для этого необходимо изучить принципиальную схему устройства). Подключенный провод укладывается по периметру корпуса. В результате такая рамка позволит без усиления уровня сигнала приводить к срабатыванию датчика при касании лицевой панели.

Следует заметить, что такое усовершенствование аннулирует гарантийные обязательства производителя.

Сенсорный выключатель своими руками

Тем, кто любит работать паяльником, можем порекомендовать несколько схем сенсорных коммутаторов, которые будет несложно собрать своими руками. Начнем с простой схемы на полевом транзисторе, именно такой принцип был заложен в первых сенсорных устройствах.

Сенсорный выключатель на полевом транзисторе

Сенсорный выключатель на полевом транзисторе

Обозначения:

  • Сопротивления: R1 — 10..15 кОм (необходимо подбирать под срабатывание сенсора), R2 – 3…5 MOм.
  • Конденсаторы: С1 – 1000 пФ (подавляет ложное срабатывание), С2 – 33,0 мкФ х 50 вольт, С3 – 470 мкФ х 50 В.
  • Транзистор VT1 – КП 501A.
  • Реле К1, может использоваться любой тип, у которого ток срабатывания не превышает 150,0 мА.

Питание схемы осуществляется от источника с напряжением 12…24 В.

Теперь рассмотрим вариант на базе асинхронного RS-триггера NE555. Схема устройства приведена ниже.

Сенсорный выключатель на микросхеме NE555

Сенсорный выключатель на микросхеме NE555

Обозначения:

  • Резисторы: R1 – 1.0 МОм, R2 – 1.0 MOм, R3 – 1,0 кОм.
  • Конденсаторы: С1 и С2 – 15 нФ, С3 – 10 нФ, С4 – 0,1 мкФ, С5 – 100,0 мкФ х 25 В.
  • Диоды: D1-D2 – 1N4001, D3 – типовой индикаторный светодиод.
  • Микросхема — NE555,
  • Реле такое же, как и в предыдущей электросхеме.

Приведенная схема в настройке не нуждается.

Завершая тему о самодельных сенсорных устройствах, следует упомянуть о системе Ардунио (Ardunio). На этой платформе можно собрать коммутирующее устройство, которое легко интегрировать в «Умный дом». Помимо этого такое устройство легко настроить на самостоятельную работу, в соответствии с заданной программой.

Компактный сенсорный датчик к системе Ардунио

Компактный сенсорный датчик к системе Ардунио

Помимо этого, система позволяет создать несколько профилей под определенные задачи. Правда, для этого потребуются навыки программирования. Получить более подробную информацию о платформе Ардунио можно на нашем сайте.

Читайте также:
Бас-ловушки для музыкальной студии своими руками: оригинальное решение

Заметим, что в приведенных схемах для питания управляющей цепи требуется источник питания с напряжением 12-24 В. Для этой цели лучше всего использовать импульсные блоки питания. В качестве таковых отлично подходит электронный баланс светодиодных и энергосберегающих ламп. Подробную информацию по этой теме, также можно найти на нашем сайте.

Как сделать дистанционное управление светом своими руками

304

Всем доброго времени суток дорогие друзья! В сегодняшней статье я бы вам хотел показать довольно интересную и простую самоделку, а именно дистанционный выключатель. Для него нам понадобиться минимум материала и самое главное, что нам абсолютно не потребуется ардуино. Данную самоделку можно приспособить не как выключатель света, а как дистанционное управление воды в кране или даже управление щеколды. На что только хватит у вас фантазии. В качестве комплектующих будут взяты самые дешёвые материалы с китайских магазинов и местных радио рынков.

Как сделать дистанционное управление светом своими руками

В общем, сегодня мы рассмотрим, как можно сделать простейшее электронное устройство, для управления светом в комнате. Ну, не будем тянуть с долгим предисловием, погнали!

И так, для данной самоделки нам понадобится:
– электродвигатель с редуктором.
– батарейка на 9V формата крона.
– плата управления и пульт управления от самой простой радиоуправляемой машины.
– конектор для батарейки.
– переходник для вала редуктора электродвигателя.
– металлическая проволока диаметром 2-4 мм и длинной не более10-12 см.
– МДФ или обычную деревянную дощечку примерно 10см на 5 см.

Из инструментов нам также понадобится:
– терма клей.
– супер клей.
– отвертка.
– паяльник.
– плоскогубцы.

Первым делом нам необходимо вырезать из деревянной дощечки или МДФ панели основную часть, на чем и будет собираться конструкция размером примерно 10 см на 5 см.

Как сделать дистанционное управление светом своими руками

Для следующего шага нам понадобится электродвигатель с редуктором, который можно приобрести в китайском интернет магазине или на любом радиорынке. Взятый нами электродвигатель следует приклеить в середину деревянного основания, которое подготовили ранее. Клеить следует при помощи супер клея.

Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками

Затем нам пригодится самая простая плата управления, её можно взять от самой простой и дешёвой радиоуправляемой машины, которая может ездить только вперёд и назад, этих способностей платы нам хватит.

Как сделать дистанционное управление светом своими руками

Плату управления при помощи терма клея следует приклеить к деревянному основанию.

Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками

После чего нам следует припаять к электродвигателю провода «+» и «-» от платы управления. В нашем случае это зелёный и жёлтый провод.

Как сделать дистанционное управление светом своими руками

Затем нам понадобится конектор кроны, который можно купить в магазине или сделать самому. Такой коннектор можно сделать из старой батарейки формата крона, просто разобрав её и отпаяв от самого конектора провода. К конектору припаиваем «+» и «-» от платы управления, это черный и красный провод. И для герметичности соединения зальём место пайки терма клеем.

Как сделать дистанционное управление светом своими руками

Взяв терма клей, приклеим конектор в указанное место (смотреть фото ниже).

Как сделать дистанционное управление светом своими руками

Для следующего шага нам понадобится подобная деталь (смотреть фото ниже). Это подобного рода переходник, который надевается на вал редуктора электродвигателя. Своего рода переходник обычно используют для изготовления самодельных мини дрелей и бор машинок.

Как сделать дистанционное управление светом своими руками

Устанавливаем взятый переходник на вал редуктора электродвигателя, при этом, не забыв зафиксировать его на винтовое соединение, просто затянув отверткой. Взяв проволоку, и плоскогубцы изготовим зигзагообразную заготовку, которую в свою очередь нужно закрепить в переходнике.

Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками

Вставляем батарейку на своё место и проверяем работоспособность конструкции. У нас должно получиться так, чтобы при нажатии на одну из кнопок электродвигатель вращался в одну сторону, а при нажатии другой кнопки соответственно в другую сторону.

Как сделать дистанционное управление светом своими руками

Как сделать дистанционное управление светом своими руками

Устанавливаем конструкцию вблизи выключателя, так чтобы механизм мог включать и выключать свет. Готово.

Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками
Как сделать дистанционное управление светом своими руками

В итоге у нас получилась простая и очень надёжная конструкция, которую можно взять за основу и использовать в другой сфере как я уже упомянул, например, для открытия и закрытия винтового крана. Думаю, многим понравится данная простая самоделка, особенно технарям и любителям сделать, что то самому.

Вот подробное видео от автора со сборкой и исправлениями данной самоделки:

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Как собрать сенсорный выключатель своими руками: описание прибора и схема сборки

Электронные технологии охватывают обширный спектр бытовой сферы. Ограничений нет практически никаких. Даже простейшие функции выключателя ламп бытового светильника теперь все чаще выполняют сенсорные приборы, а не технологически устаревшие — ручные.

Электронные устройства, как правило, входят в разряд сложных конструкций. Между тем соорудить сенсорный выключатель своими руками, как показывает практика, совсем несложно. Минимального опыта конструирования электронных приборов для этого вполне достаточно.

Предлагаем разобраться в устройстве, функциональных возможностях и правилах подключениях такого коммутатора. Для любителей самоделок мы подготовили три рабочие схемы сборки интеллектуального прибора, которые можно реализовать в домашних условиях.

Читайте также:
Делаем короб при помощи напильного станка дома в домашних условиях за 100 рублей

Конструкция сенсорного выключателя

Термин «сенсорный» несет в себе довольно широкое определение. По сути, под ним следует рассматривать целую группу датчиков, способных реагировать на самые разные сигналы.

Однако применительно к выключателям – приборам, наделенным функционалом коммутаторов, сенсорный эффект чаще всего рассматривают как эффект, получаемый от энергетики электростатического поля.

Сенсорные выключатели света

Такой, примерно, нужно рассматривать конструкцию выключателя света, созданную на основе механизма сенсора. Лёгкое прикосновение подушечкой пальца к поверхности фронтальной панели включает освещение в доме

Обычному пользователю достаточно прикоснуться пальцами руки к такому контактному полю и в ответ будет получен тот же самый результат коммутации, какой дает стандартный привычный клавишный прибор.

Между тем внутреннее устройство сенсорного оборудования существенно отличается от простого ручного выключателя.

Обычно такая конструкция выстраивается на основе четырех рабочих узлов:

  • панель защитная;
  • контактный датчик-сенсор;
  • электронная плата;
  • корпус устройства.

Разновидность приборов на базе сенсоров обширна. Выпускаются модели с функциями обычных выключателей. И есть более совершенные разработки – с регуляторами яркости, отслеживающие температуру окружения, поднимающие жалюзи на окнах и прочие.

Конструкция сенсорного выключателя

Конструктивно сенсорный коммутатор выглядит так: 1 – защитная панель из закалённого стекла; 2 – плата размещения сенсорных элементов; 3 – текстолитовая панель с разведённой схемой электроники прибора; 4 – корпус (шасси) выключателя (+)

Мало того, что все эти виды коммутаторов управляются легким прикосновением, так существуют еще выключатели с дистанционным управлением. То есть, выключить светильник или убрать яркость свечения ламп прибора пользователь может, не совершая лишних движений в виде перехода от места отдыха к выключателю.

Опции и возможности устройства

Отдельного рассмотрения явно заслуживают выключатели с таймером.

Здесь присутствуют традиционные характеристики, такие как:

  • бесшумность действия;
  • интересный дизайн;
  • безопасное использование.

Помимо всего этого, добавляется еще одна полезная функция – встроенный таймер. С его помощью пользователь получает возможность управлять коммутатором программно. К примеру, задавать время включения и отключения в определённом временном диапазоне.

Версия выключателя с таймером

Уникальный вариант разработки коммутатора с внедрённым функционалом таймера. При помощи таких приборов открываются возможности управления освещением в строго заданное время. Экономия электричества очевидна

Как правило, подобные приборы имеют не только таймер, но также аксессуар иного рода – например, акустический датчик.

В этом варианте устройство работает как контроллер движения или шума. Достаточно подать голос либо хлопнуть ладонями и лампы светильника в квартире загорятся ярким светом.

Кстати, на случай слишком высокой яркости существует очередной функционал – диммерная регулировка. Оснащенные диммером коммутаторы сенсорного типа позволяют управлять интенсивностью света.

Акустические выключатели света

Модификация сенсорных устройств – акустический коммутатор. Действует по методике несколько иной, но тоже является прибором, где поддерживаются технологии использования сенсоров. В данном случае, сенсорным элементов выступает чувствительный микрофон

Правда, есть один нюанс для подобных разработок. Диммеры, как правило, не поддерживают использование в светильниках люминесцентных и светодиодных ламп. Но устранение этого недостатка, скорее всего, вопрос времени.

Подробнее о разновидностях «умных» выключателей света читайте в этой статье.

Правила подключения прибора

Технология монтажа подобных устройств, несмотря на совершенство конструкций, осталась традиционной, как это предусмотрено для стандартных выключателей света.

Обычно на задней части корпуса изделия присутствуют два терминальных контакта – входной и под нагрузку. Обозначаются на устройствах иностранного производства маркерами «L-in» и «L-load».

Подключение приборов сенсорного действия

Техника подключения приборов мало чем отличается от стандарта. Основные рабочие клеммы: L1 (Load) – линия подключения фазы напряжения; L (In) – линия вывода напряжения под нагрузку; СОМ – терминал сопряжения приборов (+)

Эти обозначения должны быть понятны даже неискушенному пользователю. Однако в любом случае рекомендуется обращаться к паспорту устройства перед его установкой. Коммутация в схеме прибора осуществляется по фазной линии.

То есть, на вход «L-in» подается фаза — подключается фазный проводник. А с линии «L-load» снимается напряжение для нагрузки — в частности, для лампы светильника.

Между тем конструкции сенсорных выключателей могут предусматривать подсоединение нескольких независимых нагрузок. На таких приборах количество терминалов для подключения увеличивается.

Дополнительно с терминалом входящего напряжения «L-in» присутствуют уже два или даже три отверстия под нагрузку «L-load». Маркируются обычно примерно так: «L1-load», «L2-load» и т. д.

Элементы сенсорного выключателя

Полный расклад по выключателю: 1 – терминал выходов нагрузки; 2 – защитная панель; 3 – пружинный механизм крепления проводников; 4 – сведения о производителе; 5 – пожаробезопасный корпус; 6 – интерфейс двойного контроля; 7 – отверстие под винт (+)

Монтаж сенсорных коммутаторов также фактически не отличается от стандартного варианта. Конструкция выключателей изготовлена под размещение в традиционных подрозетниках. Крепление шасси рабочего механизма прибора, как правило, осуществляется винтами.

Выключатель на сенсорах своими руками

Приобрести выключатель сенсорного типа для домашнего использования, конечно, не проблема. Однако стоимость этих, своего рода интеллектуальных, приборов начинается от 1500-2000 руб. И это цена не самых совершенных конструкций. Поэтому логичным видится вопрос – а можно ли сделать сенсорную коммутацию света своими руками?

Для людей, мало-мальски знакомых с теорией электротехники, сооружение выключателя с применением сенсора — работа вполне выполнимая. Есть масса схемных решений на этот счет.

Читайте также:
Источник энергии из лимона: делаем своими руками

Схема сенсорного коммутатора на триггере

Многие схемы изготовления приборов подобного действия простые и понятные. Рассмотрим одно из многочисленных решений, которое можно реализовать своими руками для применения в домашних условиях.

Цена сенсорного выключателя

Вот такая конструкция выключателя на двух сенсорах оценивается на рынке от 1600 руб. за штуку. Если есть навыки, нечто подобное всегда можно соорудить своими руками. При этом затраты на комплектующие детали примерно в пять раз ниже

Широко распространенная в радиолюбительской практике микросхема серии K561TM2 является главным звеном сенсорного выключателя, собираемого своими руками.

Микросхема К561ТМ – это триггер, состояние которого можно изменять подачей управляющего сигнала на его вход. Это свойство успешно используется для реализации функции коммутатора.

Входная цепь построена с добавлением полевого транзистора V11, который обеспечивает высокую чувствительность по входу и дополнительно хорошо изолирует вход от выхода.

Элемент сенсора Е1 схемы изготавливается в виде металлической пластины и подключается на вход «полевика» через резистор с большим сопротивлением. Так гарантируется безопасность устройства для пользователя в плане возможного поражения электротоком.

Схема сенсорного выключателя первая

Схема прибора для сборки своими руками. Всего лишь одна микросхема, пара транзисторов и один тиристор потребуются для сборки полноценного сенсорного выключателя. Работает устройство ничуть не хуже промышленного (+)

Выходная часть схемы построена на связке биполярный транзистор VT2 – тиристор тока VS1. Транзистором усиливается сигнал, исходящий с микросхемы, а тиристор исполняет роль коммутатора. В цепь тиристора включается прибор освещения, которым требуется управлять.

Схема работает так:

  1. Пользователь касается металлической пластины (сенсора).
  2. Статическое электричество поступает на вход VT.
  3. Полевой транзистор переключает триггер.
  4. Выходной сигнал триггера усиливается VT2 и открывает тиристор.
  5. Лампа в цепи тиристора загорается.

Если пользователь прикоснётся к сенсору повторно, все операции повторяются, но с обратным переключением режимов. Все просто и эффективно.

Такое схемное решение допустимо использовать для управления светильниками, где общая мощность ламп накаливания составляет не выше 60 Вт.

Если необходимо коммутировать более мощные приборы света, можно дополнить тиристор объемным радиатором охлаждения. Металл для сенсора рекомендуется применять из серии материалов, хорошо проводящих ток. Оптимальный вариант — посеребренная медь.

Схема на основе инфракрасного датчика

Доступна для самостоятельной сборки схема коммутатора света, где в качестве сенсора применяется ИК-датчик. Здесь также используются доступные и недорогие электронные компоненты.

По степени сложности исполнения этот вариант рассчитан на электронщиков, которые только начинают свою карьеру.

Схема сенсорного выключателя вторая

Ещё одно схемное решение для устройства коммутатора сенсорного типа. Также имеет минимум электронных компонентов, но требует тщательной настройки для обеспечения качества работы. Здесь нужен наработанный опыт электронщика (+)

Базовой электроникой в этом решении выступают две микросхемы и следующие элементы:

  • светодиод обычный — HL1;
  • светодиод инфракрасный — HL2;
  • фотоприемник — U1;
  • реле — К1.

На базе микросхемы-инвертора DD1 собран генератор импульсов, а на базе микросхемы DD2 функционирует системный счетчик.

При определенных обстоятельствах, например, когда в зоне действия инфракрасного светодиода появляется биологический объект, срабатывает пара ИК-светодиод и фотоприемник. На базе транзистора VT1 появляется управляющий сигнал, которым включается реле К1. Светильник в цепи К1 загорается.

Если движение объектов в зоне действия инфракрасного датчика не отмечается, через 20 минут простоя счетчик насчитает количество импульсов от мигающего светодиода HL1, достаточное для отключения реле. Светильник отключится. Время ожидания (в этом случае 20 минут) определяется подбором элементов схемы.

Простейшая схема на транзисторах и реле

Максимально упрощенное решение – схема для самостоятельной сборки прибора сенсорного типа, которая представлена ниже.

Третья схема сенсорного выключателя

Упрощенная до минимума схема на построение сенсорного выключателя своими руками. Тем не менее, при условии точного подбора радиоэлементов, обеспечивается вполне эффективная и надежная работа устройства

Здесь допустимо применить практически любой тип реле. Главный критерий – диапазон рабочих напряжений 6-12 вольт и способность коммутировать нагрузку в сети 220 вольт.

Сенсорный элемент изготавливается путем вырезания из листа фольгированного гетинакса. Транзисторы также можно использовать любой серии, аналогичные по параметрам указанным, например, распространенные КТ315.

По сути, эта простая схема представляет обычный усилитель сигнала. При касании поверхности сенсора на базе транзистора VT1 появляется потенциал, достаточный для открывания перехода эмиттер-коллектор.

Следом открывается переход VT2 и напряжение питания подается на катушку реле К1. Этот прибор срабатывает, его контактная группа замыкается, что приводит к включению прибора света.

Если нет желания экспериментировать и собирать устройство собственноручно, можно купить готовый коммутатор и самостоятельно установить его. Вся необходимая информация о выборе и подключении сенсорного выключателя изложена здесь.

Выводы и полезное видео по теме

Этот обзор позволяет ближе познакомиться с коммутаторами света, быстро набирающими популярность в обществе.

Сенсорные выключатели, отмеченные продуктовой маркой Livolo, — что это за конструкции и насколько привлекательны они для конечного пользователя. Видео гид по коммутаторам нового типа поможет получить ответы на вопросы:

Читайте также:
Самодельный прожектор: мастерим своими руками и экономим 3 тысячи рублей

Завершая тему сенсорных коммутаторов, стоит отметить активное развитие в области разработки и производства выключателей для бытового и промышленного использования.

Выключатели света, казалось бы, простейшие конструкции, совершенны уже настолько, что теперь управлять светом можно голосовой кодовой фразой и при этом получать полную информацию о состоянии атмосферы внутри помещения.

Есть, что дополнить, или возникли вопросы по сборке сенсорного выключателя? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких приборов. Форма для связи находится в нижнем блоке.

Радиоуправляемый выключатель своими руками. Часть 1 — Hardware

Этот пост — первая часть из серии рассказов о том, как можно относительно несложно сделать своими руками радиоуправляемый выключатель полезной нагрузки.
Пост ориентирован на новичков, для остальных, думаю, это будет «повторение пройденного».

  1. Hardware выключателя
Начало
  1. Хочется реализовать удаленное управление светом и вытяжкой.
  2. Выключатели есть одно- и двух-секционные (свет и свет+вытяжка).
  3. Выключатели установлены в стене из гипсокартона.
  4. Вся проводка — трехпроводная (присутствует фаза, нуль, защитное заземление).

Второй пункт в общем-то предполагает, что надо бы сделать две разные схемы (для одно- и двух-канального выключателя), но поступим иначе — сделаем «двухканальный» модуль, но в случае, когда реально требуется только один канал — не будем распаивать часть комплектующих на плате (аналогичный подход реализуем и в коде).

Третий пункт — обуславливает некоторую гибкость в выборе форм-фактора выключателя (реально снимается существующий выключатель, демонтируется монтажная коробка, внутрь стены монтируется готовое устройство, возвращается монтажная коробка и монтируется выключатель назад).

Четвертый пункт — существенно облегчает поиск источника питания (220В есть «под рукой»).

Вводные данные ясны, можно двигаться дальше.

Принципы и элементная база

Выключатель хочется сделать многофункциональным — т.е. должна остаться «тактильная» составляющая (выключатель физически должен остаться и должна сохраниться его обычная функция по включению/выключению нагрузки, но при этом должна появиться возможность управления нагрузкой через радиоканал.

Для этого обычные двухпозиционные (включено-выключено) выключатели заменим на аналогичные по дизайну выключатели без фиксации (кнопки):

Эти выключатели работают примитивно просто: когда клавиша нажата — пара контактов замкнуты, когда клавишу отпускаем — контакты размыкаются. Очевидно, что это обычная «тактовая кнопка» (собственно так ее и будем обрабатывать).

  • берем МК (atmega8, atmega168, atmega328 — использую то, что есть «прямо сейчас»), в комплекте с МК добавляем резистор для подтяжки RESET к VCC,
  • подключаем две «кнопки» (для минимизации количества навесных элементов — будем использовать встроенные в МК резисторы подтяжки), для коммутации нагрузки воспользуемся реле с подходящими параметрами (у меня как раз были припасены реле 833H-1C-C с 5В управлением и достаточной мощностью коммутируемой нагрузки — 7A 250В~),
  • естественно, нельзя обмотку реле напрямую подключить к выходу МК (слишком высокий ток), поэтому добавим необходимую «обвязку» (резистор, транзистор и диод).

Радиоканал будем организовывать с помощью nRF24L01+:

Модуль, как известно, толерантен к 5В-сигналам на входах, но требует для питания в 3.3В, соответственно, в схему добавим еще линейный стабилизатор L78L33 и пару конденсаторов к нему.

Дополнительно добавим блокировочные конденсаторы по питанию МК.

МК будем программировать через ISP — для этого на плате модуля предусмотрим соответствующий разъем.

Собственно, вся схема описана, осталось только определиться с выводами МК, к которым будем подключать нашу «периферию» (радиомодуль, «кнопки» и выбрать пины для управления реле).

  • Радиомодуль подключается на шину SPI (таким образом, подключаем пины колодки с 1 по 8 на GND, 3V3, D10 (CE), D9 (CSN), D13 (SCK), D11 (MOSI), D12 (MISO), D2 (IRQ) — соответственно).
  • ISP — вещь стандартная и подключается следующим образом: подключаем пины разъема с 1 по 6 на D12 (MISO), VCC, D13 (SCK), D11 (MOSI), RESET, GND — соответственно).

Теперь следует определиться с тем, какие «корпуса» будем использовать. В этом месте начинает диктовать правила моя природная лень: мне очень не нравится сверлить печатные платы — поэтому выберем по максимуму «поверхностный монтаж» (SMD). С другой стороны, здравый смысл подсказывает, что использование SMD очень существенно сэкономит размер печатной платы.

Для новичков поверхностный монтаж покажется достаточно сложной темой, но реально это не так страшно (правда, при наличии более-менее приличной паяльной станции с феном). На youtube очень много видео-роликов с уроками по SMD — очень рекомендую ознакомиться (сам начал использовать SMD пару месяцев назад, учился как раз по таким материалам).

  • микроконтроллер — atmega168 в корпусе TQFP32 — 1 шт.
  • транзистор — MMBT2222ALT1 в корпусе SOT23 — 2 шт.
  • диод — 1N4148WS в корпусе SOD323 — 2 шт.
  • стабилизатор — L78L33 в корпусе SOT89 — 1 шт.
  • реле — 833H-1C-C — 2 шт.
  • резистор — 10кОм, типоразмер 0805 — 1 шт. (подтяжка RESET к VCC)
  • резистор — 1кОм, типоразмер 0805 — 1 шт. (в цепь базы транзистора)
  • конденсатор — 0.1мкФ, типоразмер 0805 — 2 шт. (по питанию)
  • конденсатор — 0.33мкФ, типоразмер 0805 — 1 шт. (по питанию)
  • электролитический конденсатор — 47мкФ, типоразмер 0605 — 1 шт. (по питанию)
Читайте также:
Бутылкорез своими руками: получаем пластиковую ленту

Тут я немного хитрю и подглядываю в свои «запасники» (просто выбираю то, что там уже есть в наличии). Вы можете выбирать компоненты по своему усмотрению (выбор конкретных компонентов выходит за пределы этого поста).

Поскольку вся схема уже практически «сформирована» (по крайней мере, в голове), можно приступать к проектированию нашего модуля.

Вообще неплохо было бы все сначала собрать на макетке (используя корпуса с выводными элементами), но поскольку у меня все описанные выше «узлы» уже неоднократно проверены и воплощены в других проектах — позволю себе этап макетирования пропустить.

Проектирование

Для этого воспользуемся замечательной программой — EAGLE.

На мой взгляд — очень простая, но в то же время — очень удобная программа для создания принципиальных схем и печатных плат по ним. Дополнительные «плюсы» в копилку EAGLE: мультиплатформенность (мне приходится работать как на Win-, так и на MAC-компьютерах) и наличие бесплатной версии (с некоторыми ограничениями, которые для большинства «самодельщиков» покажутся совершенно несущественными).

Научить вас пользоваться EAGLE в этом топике не входит в мои планы (в конце статьи есть ссылка на замечательный и очень простой для освоения учебник по пользованию EAGLE), я лишь расскажу, некоторые свои «хитрости» при создании платы.

Мой алгоритм создания схемы и платы был примерно следюущий (ключевая последовательность):

  • Создаем новый проект, внутри которого добавляем «схему» (пустой файл).
  • Добавляем МК и необходимую «обвеску» (подтягивающий резистор на RESET, блокировочный конденсатор по питанию и т.п.). Обращаем внимание на корпуса (Package) при выборе элементов из библиотеки.
  • «Изображаем» ключ на транзисторе, который управляет реле. Копируем этот кусок схемы (для организации «второго канала»). Входы ключей — пока оставляем «болтаться в воздухе».
  • Добавляем на схему разъем ISP и колодку для подлючения радиомодуля (делаем соответствующие соединения в схеме).
  • Для питания радиомодуля добавляем в схему стабилизатор (с соответствующими конденсаторами).
  • Добавляем «разъемы» для подключения «кнопок» (один пин разъема сразу «заземляем», второй — «болтается в воздухе»).
  • Размещаю клеммники для подключения силовой нагрузки.
  • Правее клеммников — реле.
  • Еще правее — элементы транзисторных ключей.
  • Стабилизатор питания для радиомодуля (с соответствующими конденсаторами) размещаю рядом с транзисторными ключами (в нижней части платы).
  • Размещаю колодку для подключения радиомодуля снизу справа (обращаем внимание на то, в каком положении окажется сам радиомодуль при паравильном подключении к этой колодке — по моей задумке он должен не выступать за пределы основной платы).
  • Разъем ISP размещаю рядом с разъемом радиомодуля (поскольку используются одни и те же «пины» МК — чтобы было проще разводить плату).
  • В оставшемся пространстве располагаю МК (корпус надо «покрутить», чтобы определить наиболее оптимальное его положение, чтобы обеспечить минимальную длинну дорожек).
  • Блокировочные конденсаторы размещаем максимально близко к соответствующим выводам (МК и радиомодуля).

Теперь уже можно определиться с подключением ключей и кнопок (смотрю, какие пины ближе к соответствующим цепям и которые проще будет подключить на плате), для этого хорошо перед глазами иметь следующую картинку:

  • Транзисторные ключи подключаем на пины D3, D4.
  • Кнопки — на A1, A0.

Внимательный читатель увидит, что на схеме ниже фигурирует atmega8, в описании упоминается atmega168, а на картинке с чипом — вообще amega328. Пусть это вас не смущает — чипы имеют одинаковую распиновку и (конкретно для этого проекта) взаимозаменяемы и отличаются только количеством памяти «на борту». Выбираем то, что нравится/имеется (я в последствии в плату запаял 168 «камушек»: памяти побольше, чем у amega8 — можно будет побольше логики реализовать, но об этом во второй части).

Собственно, на этом этапе схема принимает финальный вид (делаем на схеме соответствующие изменения — «подключаем» ключи и кнопки на выбранные пины):

После этого уже доделываю последние соединения в проекте печатной платы, «набрасываю» полигоны GND (поскольку лазерный принтер плохо печатает сплошные полигоны, делаю его «сеточкой»), добавляю пару-тройку переходов (VIA) с одного слоя платы на другой и проверяю, что не осталось ни одной не разведенной цепи.

У меня получилась платка размером 56х35мм.

Вуаля, можно приступать к изготовлению печатной платы.

Изготовление печатной платы

Плату делаю методом ЛУТ (Лазерно-Утюжная Технология). В конце поста есть ссылка на материалы, которые мне очень помогли.

  • Печатаю на бумаге Lomond 130 (глянцевая) нижнюю сторону платы.
  • Печатаю на такой же бумаге верхнюю сторону платы (зеркально!).
  • Складываю полученные распечатки изображениями внутрь и на просвет совмещаю (очень важно получить максимальную точность).
  • После этого степлером скрепляю листки бумаги (постоянно контролируя, чтобы совмещение не было нарушено) с трех сторон — получается «конверт».
  • Вырезаю подходящего размера кусок двустороннего стеклотекстолита (ножницами по металлу или ножевкой).
  • Стеклотекстолит нужно обработать очень мелкой шкуркой (убираем окислы) и обезжирить (я делаю это ацетоном).
  • Полученную заготовку (аккуратно, за края, не трогая очищенные поверхности) помещаю в полученный «конверт».
  • Разогреваю утюг «на полную» и тщательно утюжу заготовку с двух сторон.
  • Оставляю плату остыть (минут 5), после этого можно под струей воды отмачивать бумагу и удалять ее.
Читайте также:
Самодельный фильтр для воды: мастерим своими руками и экономим одну тысячу рублей

Далее плату травлю в растворе хлорного железа (не допуская недо- и пере-травливания).

Тонер смываю ацетоном.

Совет: когда делаете мелкие платы, сделайте заготовку под нужное количество плат, просто разместив изображения верхней и нижней части платы в нескольких экземплярах — и уже это «комбинированное» изображение «накатывайте» на заготовку из стеклотекстолита. После травления достаточно будет разрезать заготовку на отдельные платы.
Только обязательно проверяйте размеры плат при вводе на бумагу: некоторые программы любят «чуть-чуть» изменить масштаб изображения при выводе, а это недопустимо.

Контроль качества

После этого делаю визуальный контроль (требуется хорошее освещение и лупа). Если есть какие-то подозрения, что имеется «залипуха» — контроль тестером «подозрительных» мест.

Для самоуспокоения — контроль тестером всех соседствующих проводников (удобно пользоваться режимом «прозвонка», когда при «коротком замыкании» тестер подает звуковой сигнал).

Если все-таки где-то обнаружен ненужный контакт — исправляю это острым ножом. Дополнительно обращаю внимание на возможные «микротрещины» (пока просто фиксирую их — исправлять буду на этапе лужения платы).

Лужение, сверление

Я предпочитаю плату перед сверлением залудить — так мягкий припой позволяет чуть проще сверлить и сверло на «выходе» из платы меньше «рвет» медные проводники.

Сначала изготовленную печатную плату необходимо обезжирить (ацетон или спирт), можно «пройтись» ластиком, чтобы убрать появившиеся окислы. После этого — покрываю плату обычным глицерином и дальше уже паяльником (температура где-то около 300 градусов) с небольшим количеством припоя «вожу» по дорожкам — припой ложится ровно и красиво (блестит). Лудить надо достаточно быстро, чтобы дорожки не поотваливались.

Когда все готово — отмываю плату с обычным жидким мылом.

После этого уже можно сверлить плату.
С отверстиями диаметром более 1мм все достаточно просто (просто сверлю и все — надо только вертикальность постараться соблюсти, тогда выходное отверстие попадет в отведенное ему место).

А вот с переходными отверстиями (я их делаю сверлом 0,6мм) несколько сложнее — выходное отверстие, как правило, получается немного «рваным» и это может приводить к нежелательному разрыву проводника.
Тут можно посоветовать делать каждое отверстие за два прохода: засверлить сначала с одной стороны (но так, чтобы сверло не вышло с другой стороны платы), а затем — аналогично с другой стороны. При таком подходе «соединение» отверстий произойдет в толще платы (и небольшая несоосность не будет проблемой).

Монтаж элементов

Сначала распаиваются межслойные перемычки.
Там где это просто переходные отверстия — просто вставляю кусочек медной проволоки и запаиваю его с двух сторон.
Если «переход» осуществляется через одно из отверстий для выводных элементов (разъемы, реле и т.п.): распускаю многожильный провод на тонкие жилы и аккуратно запаиваю кусочки этой жилы с двух сторон в тех отверстиях, где нужен переход, при этом минимально занимая пространство внутри отверстия. Это позволяет реализовать переход и отверстия остаются достаточно свободными для того, чтобы соответствующие разъемы нормально встали на свои места и были распаяны.

Тут опять следует вернуться к этапу «контроль качества» — прозваниваю тестером все подозрительные ранее и полученные в ходе лужения/сверления/создания переходов новые места.
Проверяю, что обнаруженные ранее микротрещины устранены припоем (или устраняю припаивая тонкий проводник поверх трещинки, если после лужения трещинка осталась).

Устраняю все «залипухи», если такие все-таки появились в процессе лужения. Это гораздо проще сделать сейчас, чем в процессе отладки уже полностью собранной платы.

Теперь можно приступать непосредственно к монтажу элементов.

Мой принцип: «снизу вверх» (сначала распаиваю наименее высокие компоненты, потом те, что «повыше» и те, что «высокие»). Такой подход позволяет с меньшими неудобствами разместить все элементы на плате.

Таким образом, сначала распаиваются SMD-компоненты (я начинаю с тех элементов, у которых «больше ног» — МК, транзисторы, диоды, резисторы, конденсаторы), потом дело доходит и до выводных компонентов — разъемов, реле и т.п.

Таким образом, получаем уже готовую плату.

P.S. «Двухканальный» модуль можно использовать для замены «проходных» выключателей (обычно ставятся в начале и конце лестницы между этажами и т.п. местах).

P.P.S. Если использовать более плоские кнопочные выключатели, то при небольшой доработке можно сделать платы, которые уместятся в существующие монтажные коробки (т.е. не только для размещения в нишах гипсокартонных стен).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: