Мастерим солнечную батарею своими руками: экономим солидную сумму денег

«Сами с усами» или самодельные солнечные батареи

Ни для кого не секрет, что солнечная энергетика набирает обороты с каждым днем. Одна проблема: из-за высокой стоимости модулей позволить себе пользоваться дарами солнца может не каждый, вот и выкручиваются умельцы как могут. Кто-то заказывает фотоэлементы через интернет-магазины и уже из них паяет солнечные панели, некоторые изготавливают батареи из светодиодов и транзисторов, а кому-то в голову приходят более интересные идеи, не требующие больших финансовых вложений.

Ведь мало, кто задумывается, что для того, чтобы солнце работало для Вас и Вашего дома, не нужно устанавливать дорогостоящую солнечную систему, нужно только внимательно посмотреть вокруг себя. Порой, самые обычные вещи, которые уже давно можно сдать в утиль, могут принести немалую помощь и сэкономить Вам кучу денег. Минимум финансовых затрат, немного усилий, и Ваши приборы начинают потреблять бесплатную энергию.

Тепло от алюминиевых банок

Банки в дело!

Вряд ли найдется хотя бы один человек, который никогда не пил из алюминиевых банок. И чаще всего мы их просто выкидываем, а ведь они могут стать отличным исходным материалом при изготовлении солнечной батареи для дома. Да, да, не удивляйтесь, это не выдумка, а вполне проверенный факт. Единственное уточнение, из алюминиевых банок вы сможете смастерить не батарею, а коллектор, то есть на выходе Вы получите не электрическую энергию, а тепловую, например, для обогрева дома, что тоже очень даже неплохо.

Делается подобная солнечная батарея очень просто. Все, что Вам понадобится это некоторое количество банок, рама и материал для остекления коллектора. Из деревянных брусков или картона собирается рама, которая заполняется банками. Для увеличения количества поглощенного тепла раму и банки рекомендуется покрасить в черный цвет. Сверху полученная конструкция накрывается стеклом, гофрированным поликарбонатом или пластиком. У каждого из этих материалов есть и плюсы, и минусы. Стекло является самым дорогим и хрупким, главный недостаток поликарбоната – небольшая ширина листа, всего 60 см, а пластик прослужит Вам не больше 3-х лет. Но при этом все они справляются с повышенными температурами и хорошо пропускают солнечный свет.

Каким бы странным Вам не казался этот метод изготовления батареи (коллектора) из алюминиевых банок, практика показывает, что он вполне действенный. При размещении на южной стороне дома такая самодельная батарея хорошо нагревается и может служить эффективным обогревательным прибором. А с ее сборкой справится и школьник.

Подробности изготовления солнечной панели из банок на видео:

Транзисторы – генераторы электричества

Самодельная солнечная батарея, которая на выходе будет генерировать не тепловую энергию (как в предыдущем разделе), а электрическую может быть собрана из обычных транзисторов. Конечно, для энергообеспечения всего дома такая самодельная батарея не подойдет, но запитать небольшие приборы или подзарядить мобильный телефон Вы точно сможете. Чем больше транзисторов Вы используете, тем более мощная солнечная батарея у Вас получится, это нужно учитывать.

Первое с чего нужно начать, это аккуратно спилить верхнюю часть элемента, чтобы солнечный свет беспрепятственно попадал на p-n переходы. Если Вы используете транзисторы типа П, необходимо высыпать порошок из его внутренней части. После этих приготовлений переходим непосредственно к процессу сборки. Последовательное соединение элементов используется для повышения напряжения, а параллельное – силы тока. В качестве подложки рекомендуется использовать текстолит или органическое стекло. Чтобы не повредить кристалл транзистора, паять выводы, подходящие к нему, лучше не стоит. Один транзистор обеспечивает силу тока от 0,1 до 3 мА, а блок, состоящий из 4-х транзисторов, – от 10 до 15 мА.

Светодиоды – свет во все дома

Паяем светодиоды

Самодельная солнечная панель из светодиодов – явление не новое, вот только изготовить ее можно лишь в качестве эксперимента, ведь, как показывает практика, вырабатываемое ею напряжение слишком мало, чтобы от него был толк. Более подробно о батареях из светодиодов мы уже писали в одной из предыдущих статей «Мастерим солнечную батарею из диодов», поэтому сильно углубляться в эту тему не будем. Заметим только, что для подобной панели подойдут светодиоды любого размера и цвета, но в зависимости от цвета светодиодов будет зависеть их светопропускная способность.

Значение пикового напряжения 1 светодиода равняется в среднем 2,5 В. Для увеличения выходных параметров элементы соединяются последовательно/параллельно, но для того, чтобы получить хорошие показатели количество светодиодов должно быть неограниченно большое. Одно уточнение: подобная батарея очень чувствительна к углу наклона относительно солнца, даже небольшое отклонение от прямого попадания лучей может снизить напряжение на выходе.

Фольга для батареи – в чем плюс?

Дачный водонагреватель

Как мы выяснили из предыдущих разделов статьи, самодельная солнечная батарея может делаться из различных материалов, причем некоторые из них улучшают эффективность ее работы. Так, например, использование фольги для подложки позволяет увеличить отражающую способность. Один из вариантов – изготовление солнечного коллектора из самого простого шланга для полива, деревянной рамы и фольги. Подводим к шлангу 2 трубки, и солнечный водонагреватель для дачного дома готов.

Также фольгу можно использовать и при установке панелей, размещая их на поверхность фольги, Вы уменьшаете риск перегрева батареи, что способствует улучшению их эксплуатации и увеличению срока работоспособности. Напоследок один совет: не бойтесь экспериментировать, ведь когда-то те вещи, без которых сегодня мы не представляем своей жизни, людям казались фантастикой. Лишь эксперименты двигают науку вперед. И кто знает, может, Вы придумаете новый способ изготовления солнечной батареи своими руками.

Как самостоятельно сделать солнечную батарею

Как самостоятельно сделать солнечную батарею

Выйти из кабальной зависимости от поставляющих электроэнергию в наши дома компаний, мечта буквально каждого жителя планеты. С каждым годом электричества для бытовых нужд требуется все больше. И в связи со спросом на него, увеличивается и стоимость услуг. Поэтому любой житель нашей страны мечтает перейти на альтернативное электроснабжение. Рассмотрим, как сделать солнечную батарею самостоятельно, что для этого понадобится, и как правильно подключить ее к аккумулятору.

Устройство и принцип работы

За описание механизма фотоэлектрического эффекта Альберт Эйнштейн получил нобелевскую премию. А первое преобразование солнечных лучей в электричество стало возможным еще в середине девятнадцатого века, когда француз Александр Беккерель открыл это явление. Правда понадобилось еще 50 лет, чтобы русский ученый Александр Столетов в своей лаборатории смог получить практический результат.

Читайте также:
Детектор лжи своими руками

Первый солнечный фотоэлемент из кристаллического кремния разработала компания Bell Laboratories в 1954 году. Именно с этого момента и взяла старт технология, благодаря которой рассчитывают полностью убрать из обихода углеродное топливо. Причем перспективы поистине огромны. С квадратного метра земной поверхности за день можно получить 4.2 кВт/час солнечной энергии. Что эквивалентно расходу одного барреля нефти.

Одна фотоэлектрическая ячейка производит ток, который измеряется в миллиамперах. И чтобы сделать солнечную панель, вырабатывающую электроэнергию достаточной мощности, такие звенья соединяют в модульную конструкцию. Целые массивы, из разного количества фотоэлементов, и составляют солнечную батарею.

Из-за сложности и дороговизны изготовления, технология изначально нашла применение только в космической отрасли. Но когда придумали способ производить фотоэлементы из более дешевых материалов, то солнечная батарея пришла и в наши дома. Сначала для портативных калькуляторов, затем для фотоаппаратов и небольших светильников.

Вскоре технология перекочевала из космоса и на землю. Начались создаваться геоэлектрические установки, которые закреплялись на крышах домов. Благодаря такому новшеству, эти здания отключались от проводного электричества и становились автономными. И сейчас уже не редкость встретить многокилометровые поля с установленными на них кремниевыми панелями. Такие электростанции способны обеспечить электроэнергией целые города.

Сложный фотоэлектрический эффект оказался чрезвычайно прост. Но это на сегодняшний день. Ведь еще 50 лет назад не было технологии, позволяющей получать материалы с неустойчивой атомной структурой. А именно это свойство вещества и является ключом к получению энергии. Когда отдельные неустойчивые атомы бомбардируются фотонами света, то из их орбит выбиваются электроны. Вот последние и представляют из себя источник тока.

Открытие полупроводников выступило огромным скачком в развитии отрасли получения альтернативных источников электроэнергии. Эти материалы имеют атомы, у которых или слишком много электронов, или очень мало. Деление на катод (излишек) и анод (нехватка) и позволяет при обстреле фотонами света выбивать частицы из атомов с избытком электронов.

Таким способом катод передает их на свободные орбиты аноду. А если создать нагрузку, то электроны возвращаются на свои первоначальные места. Таким образом движение частиц в замкнутом контуре создает электрический ток. А привычное магнитное поле в громоздких электрических генераторах заменяется на поток частиц солнечного излучения.

Виды панелей и их достоинства

Давайте разберемся, из чего делают солнечные батареи. Для изготовления самой первой ячейки использовали селен. Но полученные фотоэлементы имели очень высокую химическую активность и быстро старились. К тому же и КПД было смехотворное – всего 1 %. В поисках замены был опробован кристаллический кремний. Но этот элемент является диэлектриком. Поэтому для проводимости пришлось добавлять различные редкоземельные металлы.

На сегодняшний момент существует три типа фотоэлементов из кремния:

  • на монокристаллах;
  • поликристаллические;
  • аморфные.

Для каждого вида применяется своя технология изготовления. В первом случае слитки кремния проходят самую высокую степень очистки. И только после этого с них срезаются тончайшие слои. А на заключительном этапе получают темно-синие пластины, похожие на стекло и с ярко выраженной электродной сеткой на поверхности.

Монокристаллические фотоэлементы имеют самое высокое КПД – 19 %. А срок эксплуатации рассчитан на 50 лет. Любая ячейка из кремния со временем теряет производительность. И в этом случае лидируют аморфные. Но монокристаллы делают это очень медленно. Построенные из них 40 лет назад батареи еще работают и сохранили 80% своей первоначальной производительности.

Если к электропитанию дома выполнить подключение солнечных панелей с поликристаллическими фотоэлементами, то их замена потребуется через 25 лет. КПД такого устройства хоть и меньше монокристаллического, но еще достаточно неплохое – 15 %. Понижение параметров связано с тем, что в этом случае используется более дешевый кремний. А он не такой чистый. Поэтому изготовленные пластины получаются с более светлым узором, образующим границы между кристаллами.

Но поликристаллические фотоэлементы имеют и свои плюсы. Во-первых, это сравнительно низкая цена, чем у монокристаллических. Во-вторых, они не так сильно зависимы от низкой облачности и ориентации на светило. А также легче переносят внешние загрязнения. Это делает поликристаллические солнечные батареи намного популярнее для пользователей.

Аморфный кремний не имеет кристаллической структуры. При изготовлении тончайший слой химического элемента наносится либо на стекло, либо полимер. Такие панели работают недолго. Аморфный слой быстро выгорает на солнце и полностью деградирует. Да и КПД составляет только 9 %. Причем со временем быстро падает. Но дешевый способ производства несколько оправдывает их применение в некоторых областях. Например, быстрое снижение КПД нивелирует высокая солнечная активность в пустынях.

Поскольку отрасль считается высоко перспективной, то ее изучение и разработка идет полным ходом. Продолжается поиск новых материалов, которые позволят удешевить производство и максимально повысить КПД. И на сегодняшний день уже получена новая технология по изготовлению пленочных фотоэлементов, которые обладают очень хорошей долговечностью. Да и производительность их выше, чем у сделанных из кремния.

Тонкопленочные фотоэлементы изготавливают из:

  • теллурида кадмия;
  • полимеров;
  • индия и селенида меди.

Подключение таких солнечных батарей в частном секторе только планируется. А пока их выпуском занимается лишь несколько лидеров в этой отрасли. Гибкие фотоэлементы еще большая редкость. Поэтому использование их в самостоятельном моделировании возможно только в будущем.

Фотоэлементы и их замена

Кустарное изготовление солнечной батареи неизбежно будет уступать изделиям промышленных компаний. Даже если использовать самые лучшие материалы. Дело в том, что у производителей налажен скрупулезный отбор фотоэлементов, с выбраковыванием всех, с малейшим занижением параметров.

А для защиты модульных ячеек используется специальное стекло. Оно имеет максимальную способность к пропусканию света. А вот отражающая составляющая в нем снижена. Такой материал в торговые сети просто не поступает.

Но самая важная составляющая – это наличие лаборатории. Прежде, чем запустить образец в массовое производство, его обкатывают на различных математических моделях. Улучшая систему отвода тепла, снижая зависимость производительности от нагрева. А также происходит поиск оптимального сечения соединительных шин и способа снижения деградации у фотоэлемента.

Читайте также:
Источник энергии из лимона: делаем своими руками

Но между тем, самостоятельно сделанные солнечные панели имеют право на жизнь. Если не принимать во внимание слишком узкие моменты, то кустарная батарея показывает не такие уж плохие результаты по производительности. А выигрыш в цене получается более, чем в два раза. Главное найти самые подходящие фотоэлементы.

Пленочные для самоделки отпадают даже для тех, кто не ограничен в затратах. Их просто нет в продаже. На аморфные и смотреть не стоит. Слишком низкое КПД и быстрая деградация не оправдает даже низких расходов. Поэтому ориентироваться нужно на кристаллический кремний. И начинать нужно с более дешевых поликристаллов. Кроме оправданной экономии, существует и другая причина для этого выбора. Чтобы работать с монокристаллом, необходим хороший навык.

На сегодняшний день рынок уже широко предлагает продукцию из кристаллического кремния. Кроме основных производителей, существует немало мелких компаний, причем на наших отечественных просторах, которые торгуют, как готовыми изделиями, так и их комплектующими. Другое дело, что товар попадается не всегда качественный, а его цена все равно завышена.

Поэтому нужно смотреть в сторону зарубежных торговых площадок. На Taobao, Ebay, Aliexpress и Amazon всегда предложат недорогой товар в широком ассортименте. Причем можно купить не только нужное количество фотоэлементов по отдельности, но и полуготовое изделие. Многие продавцы предлагают удобные наборы для самостоятельной сборки солнечной панели. Можно даже подобрать нужную мощность.

Порой очень выгодно приобретать товар класса «В». Продавец предлагает элемент солнечной батареи с механическими дефектами. Нужно сказать, что небольшие сколы и даже трещины существенно не влияют на производительность фотоэлементов. Зато их стоимость получается гораздо меньше.

А между тем опытные радиолюбители знают, что сырье для солнечной батареи можно найти буквально под ногами. И даже неплохого качества. Речь идет о старых радиодеталях. Оказывается, что кристаллический кремень можно выпаять из диодов и транзисторов. Но если рассуждать здраво, такой способ заслуживает мало внимания.

Даже самый мощный германиевый транзистор обладает кремнием, который на самом ярком солнце даст силу тока всего в несколько микроампер. Придется изрядно попотеть, чтобы собрать сеть из нескольких сотен полупроводников. И на практике получится изготовить солнечный элемент, разве что для зарядки мобильного телефона. Но если есть желание, в виде эксперимента и для приобретения навыков можно попробовать.

Расчет и проект

Перед тем, как удастся подключить солнечную панель в своем доме, придется проделать немало работы. И прежде всего нужно взяться за расчеты. Желание отказаться от проводного электричества и обзавестись собственной электростанцией есть у каждого. Но нужно хорошо проанализировать возможность реализации такой затеи.

Сначала изучаем счет на оплату от поставщика электроэнергии. В нем указано, за сколько киловатт требуется погасить задолженность. Это число нужно делить на 30 (количество дней в месяце). Так можно узнать среднюю суточную потребность в электричестве. И предположим, что у нас получилось 10 кВт в сутки.

В идеальных условиях понадобится батарея мощностью 1,5 кВт, чтобы закрыть нашу потребность. Но придется учесть все враждебные обстоятельства. А их немало. Во-первых, батарея будет вырабатывать электричество только днем. Причем наибольшая эффективность приходится на время от девяти утра до четырех пополудни. А это только 70 % генерации от суточной нормы.

Во-вторых, даже легкая дымка в атмосфере снизит токоотдачу в 2-3 раза. А сплошная облачность заставит производительность упасть сразу в 15-20 раз. Поэтому мощность батареи уже нужно увеличивать, как минимум на 40 %. Но это еще не все.

Для накопления электричества понадобится объемный аккумулятор и не менее мощный преобразователь напряжения. Без последнего никак не обойтись, поскольку все бытовые приборы запитываются от тока напряжением 220 В. Но накопление и трасформация неизбежно сопровождаются потерями. Эксперты утверждают, что они доходят до 30 %. Поэтому к ранее прибавленным 40 % плюсуем и это число. И в итоге уже понадобится солнечная батарея от 2,5 до 3 кВт мощностью.

Далее вычисляем количество аккумуляторов. Причем нужны низковольтные, рассчитанные на напряжение в 12, 24 и 48 Вольт. Если использовать обычный автомобильный вариант (12 В), то принимая во внимание суточную норму и неизбежные потери, их понадобится 6 штук. Конечно можно взять лучшие, на 48 В, но это только увеличит общую стоимость всей установки.

Сразу нужно развеять миф, об использовании солнечной батареи для обогрева дома в зимний период. Если к произведенным расчетам добавить вычисления на установку электрических ТЭНов, то в итоге понадобится очень серьезная гелиоэлектрическая станция. И ее самоокупаемости, а тем более экономии, придется ждать долгие годы.

Что касается размеров батареи, то они опять же зависят от ее мощности, а также от вида фотоэлемента. Если брать элементы с поликристаллическими ячейками, которые выдают напряжение 0,5 В, а силу тока 3 А, то такая мини панель будет со сторонами 3 на 6 дюймов. Как правило, для зарядки аккумулятора их понадобится соединять в блоки по 30 штук. Поскольку мощность одного такого модуля составляет 45 Вт, то уже нетрудно подсчитать необходимое количество блоков для создания необходимой мощности, чтобы закрыть суточные потребности.

Инструкция по изготовлению

Разберемся в подробностях, как самому сделать солнечную батарею. Учитывая вышеизложенные расчеты, для нее понадобится 120 пластин. Для монтажа удобнее всего использовать их размещение в соотношении 1:1. Поэтому нужно уложить 15 рядов по 8 элементов в каждом. При этом два соседних столбика соединяются последовательно. А полученные 4 блока легко состыковать параллельно.

Корпус

Начинать сборку необходимо с создания каркаса. Для этого по нашим размерам делаем рамку из алюминиевых уголков. Можно использовать деревянную квадратную рейку сечением не более 25×25 мм. Чтобы борта каркаса не отбрасывали тень на крайние элементы. Можно в середине рамки для усиления расположить такую же рейку.

Обратная сторона корпуса закрывается фанерой или OSB. С нижнего торца высверливаются вентиляционные отверстия для выравнивания влажности. Иначе не избежать запотевания стекла. Последнее должно быть самым высококачественным и с максимальной степенью прозрачности. Его вырезают по внешним размерам корпуса. Для крепления используют уголковые кронштейны.

Читайте также:
Самодельная ручная соковыжималка: экономим 5 тысяч рублей

Можно использовать плексиглас. Тогда его крепят к раме, высверлив по его краям отверстия для саморезов. Деревянный корпус обязательно обрабатывают антибактериальной пропиткой и покрывают масляной краской. Это убережет его от влаги и плесени.

Пайка пластин

Поскольку укладка будет выполняться в 15 рядов, то рациональнее соединять между собой только по 5 пластин. Чтобы не повредить хрупких деталей. А окончательную сборку проводить на подложке. Для пайки необходим маломощный паяльник (40 Вт) и добротный легкоплавкий припой. При соединении деталей друг с другом необходимо соблюдать полярность.

Собрав небольшую цепочку, нужно ее протестировать. Для этого помещаем пластины под включенную лампу и снимаем показания вольтметром. Запись значений силы тока и напряжения позволит сравнить параметры модулей.

После этого на тыльную часть пластин наносится силиконовый герметик. Приклеиваем модули к подложке из обычного ДВП, которую нужно подготовить заранее, вырезав по внутренним размерам рамки. Окончательное соединение элементов проводим по схеме, указанной в самом начале инструкции. А каждый 15-вольтовый блок снабжается диодом Шоттки. Это не позволит разряжаться аккумулятору, когда напряжение панели упадет.

Сборка панели

Собранную подложку помещают внутрь корпуса и закрепляют саморезами. В поперечной рейке, служащей усилением для рамы, заранее высверливаются отверстия для монтажных проводов. Кабель выводят наружу и припаивают к выводам сборки. Лучше использовать двухцветные жилы. Это поможет не ошибиться с полярностью.

На внешнюю лицевую сторону рамки наносится силиконовый герметик сплошным слоем. И уже на него укладывается стекло. Для надежности его фиксируют уголковыми кронштейнами. А выступившие излишки герметика удаляют.

Видео описание

Видео покажет, как делают солнечные батареи своими руками:

Установка и подключение

В частном секторе обычно панель располагают прямо на наклонном скате крыши дома, надежно фиксируя ее на кровле. При этом выбирают самую солнечную сторону. Но эффективнее установить батарею на ровной плоскости, не имеющей тени в любое время дня. А для этого понадобится еще одна конструкция, которую можно сделать из любых крепких материалов.

В промышленных масштабах применяют автоматизированные подставки, которые снабжены электродвигателями и различными датчиками. Последние следят за положением солнца и передают команду моторам. А те изменяют угол наклона панели. Для бытового использования собирается простая, но крепкая наклонная конструкция, положение которой придется изменять пару раз в день самостоятельно.

Рассмотрим, как подключить солнечную батарею к аккумуляторам и потребителям. Для этого в первом случае понадобится контролер зарядка. Прибор контролирует токоотдачу и автоматически переключает дом на сетевое питание, когда напряжение в аккумуляторах даст просадку. Контролер подбирается согласно мощности собранной электростанции.

Для питания бытовых приборов, необходимо низковольтное выходное напряжение аккумулятора пропустить через инвертор. Он трансформирует его в 220 В. Оба прибора можно приобрести на месте, а не искать их на западных торговых площадках. Отечественные образцы достаточно надежны и обладают всеми необходимыми характеристиками. К тому же такая покупка подкрепляется реальной гарантией.

Видео описание

Видео продемонстрирует, как подключить солнечную батарею к аккумулятору:

Коротко о главном

Самостоятельно собрать солнечную батарею сложно только на первый взгляд. Если не заниматься изготовлением фотоэлементов, а приобрести уже готовые пластины, то с монтажом модулей справится человек, без специальных узконаправленных знаний. Желательно при этом иметь опыт обращения с паяльником.

Перед сборкой необходимо провести расчеты для определения требуемой мощности панели. Это нужно, чтобы подсчитать количество фотоэлементов, которое уйдет на монтаж. Для этого берется среднее значение потребляемой в сутки электроэнергии и делаются поправки в большую сторону на неизбежные потери при трансформации и накоплении, а также на погодные условия.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Солнечные батареи – это одно из перспективных средств получения электрической энергии. На приобретение такого устройства нужно потратить довольно много денег. Но можно сделать солнечную батарею своими руками, и это обойдется дешевле.

Устройство и принцип работы

Солнечная батарея – это несколько полупроводниковых фотоэлементов, преобразующих световую энергию в электричество. Ее работа основана на использовании барьерного фотоэффекта.

Принцип работы полупроводникового фотоэлемента

В месте соединения полупроводников разных типов проводимости (р и n) возникает электрическое поле, которое препятствует проникновению электронов из области с n-проводимостью в зону р-типа и «дырок» из участка полупроводника с р-проводимостью в участок с n-проводимостью . Если осветить такой кристалл, то элементарные частицы света – фотоны – будут выбивать электроны со своих орбит и генерировать электронно-дырочную пару.

При этом электроны, генерируемые в р слое рядом с р- n- переходом, под действием электрического поля барьера будут переходить в n- область. Аналогично «дырки», возникающие под действием света n- области, будут выноситься в зону с р-проводимостью. В результате в n- слое возникнет избыток электронов, и, соответственно, эта область будет заряжена отрицательно. Соответственно, в p-слое появится избыток “дырок” и положительный заряд. На контактах пластины возникнет разность потенциалов. Отрицательное напряжение будет действовать на контакте, соединенном с полупроводником n- типа, а положительное – на другом выводе.

фотоэлемент

Из чего состоит

Для изготовления солнечных батарей используют такие материалы:

  • кремний ( Si );
  • германий ( Ge );
  • арсенид галлия ( GaAs );
  • селен ( Se );
  • теллурид кадмия ( CdTe ) .

Самое большое распространение получили солнечные элементы, изготовленные на основе кремния. Они отличаются хорошим КПД и сравнительно невысокой стоимостью.

Солнечные источники питания бывают трех видов: монокристаллические, поликристаллические и аморфные.

  1. Монокристаллические элементы сделаны из одного цельного кристалла кремния. Эти элементы изготавливают, разрезая искусственно выращенные кристаллы кремния. Их КПД находится в пределах от 13 до 25%. Они могут работать в течение 25 лет, однако, их коэффициент полезного действия со временем уменьшается. Такие элементы теряют свою эффективность при слабом освещении.
  2. Поликристаллические фотоэлементы изготавливают, расплавляя, а потом охлаждая кристалл кремния. КПД таких приборов находится в пределах от 9 до 18%. Срок их службы 10 лет, но при этом коэффициент полезного действия не уменьшается с течением времени. Эти модули могут работать даже в плохую погоду.
  3. Солнечные элементы на основе аморфного кремния изготавливают путем напыления полупроводника на основание из полимера. Такие элементы способны гнуться, поэтому их легко монтировать. Однако КПД у них небольшой – от 5 до 10%, а срок службы не более 2-х лет. Неплохо работают при слабом освещении.

Рекомендуется выбирать одинаковые фотоэлементы, чтобы не возникло проблем при сборке панели и во время работы.

Пошаговая инструкция по сборке панели из готовых элементов

Изготовление солнечной панели начинается с подбора инструментов и приобретения фотоэлементов. После этого делаем каркас, соединяем элементы в батарею, устанавливаем их в корпус, герметизируем конструкцию и подключаем ее к контроллеру и аккумулятору. Рассмотрим по шагам, как самому сделать солнечную батарею.

Читайте также:
Самодельные меховые аудио-наушники

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Нам понадобятся такие материалы и инструменты

Прежде чем начать собирать солнечную батарею, нам потребуются такие материалы:

  • фотоэлементы;
  • ДСП или фанера;
  • деревянные рейки;
  • алюминиевый уголок;
  • стекло;
  • герметик;
  • диоды Шотки;
  • провода;
  • крепежные болты, винты, гайки, саморезы;
  • стекло или прозрачный полимер.

Также потребуются аккумулятор, контроллер и инвертор. Кроме материалов, нужны также следующие инструменты:

  • набор отверток;
  • электродрель;
  • шуруповерт;
  • паяльник;
  • мультиметр.

Шаг 1: Выбор элементов

Покупать лучше всего кремниевые монокристаллические фотоэлементы. Они имеют лучший КПД и более долговечны по сравнению с остальными моделями элементов.

Чтобы рассчитать, сколько элементов потребуется, нужно определить суммарную площадь пластин. При ее определении следует учитывать, что с 1 м. кв. можно получить 120 Вт. Таким образом, чтобы получить 3 кВт энергии, нужна солнечная батарея площадью 3 000 Вт / 120 Вт = 25 м. кв. Приведенные выше расчеты являются приблизительными и не учитывают особенностей местности, в которой будет установлен источник тока. Кроме того, мощность, выдаваемая таким источником питания, зависит от погодных условий.

Важно! Сила тока и мощность, выдаваемые фотоэлементом, зависит от его размера, а напряжение – от материала и типа ячейки.

Часто в магазине продаются фотоэлементы со светочувствительным покрытием для защиты от механических повреждений. Чтобы его удалить, нужно:

  • распаковать панели и поместить их в горячую воду (температура воды до 90 градусов);
  • когда воск растает, а вода немного остынет, нужно разъединить элементы;
  • удалить со всех панелей остатки воска;
  • вынуть элементы из воды и просушить.

Шаг 2: Делаем каркас

Размер каркаса самодельных солнечных батарей зависит от габаритов фотоэлементов. При расчете габаритов следует также учитывать расстояние между элементами.

Чтобы сделать каркас из алюминиевых уголков, нужно:

После того этого можно приступать к изготовлению задней части каркаса. Она состоит из стенки, сделанной из фанеры, и бортиков, изготовленных из деревянных реек. Их высота не должна быть больше 2 см, чтобы не затенять светочувствительные элементы. Чтобы сделать деревянную часть корпуса, нужно:

Шаг 3: Схемы соединения элементов в батарею

Давайте разберемся, как собрать солнечную панель. Существует три схемы соединения солнечных элементов: параллельная, последовательная и смешанная.

При параллельном соединении напряжение остается таким же, как и у каждого модуля, а сила тока увеличивается во столько раз, сколько источников тока соединено последовательно. Например, если соединить таким образом две батареи напряжением 15 В (30 элементов по 0,5 В, соединенные параллельно) и мощностью 75 Вт, то получим источник питания на 15 В и 150 Вт.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

При параллельном соединении нужно использовать диоды. Они нужны для того, чтобы электрическая энергия из модуля с большим напряжением не перетекала в батарею с меньшей разностью потенциалов. Кроме того, они не дают току от аккумулятора течь через ячейки в темное время суток. Диоды подключаем анодом к плюсу батареи, как показано на схеме.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Последовательное соединение используется для того, чтобы повысить напряжение источника питания. Сила тока при этом остается такой же. Если соединить последовательно те же элементы, что и в прошлом примере, то получим источник питания на 30В мощностью 150 Вт.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

С помощью смешанного соединения можно повысить как напряжение, так и ток, выдаваемые солнечной батареей.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Кроме того, рекомендуется также использовать обходные (байпасные) диоды. Они подключаются параллельно светочувствительным ячейкам и нужны для подстраховки. Если один из фотоэлементов выйдет из строя, то ток пойдет через обходной диод и батарея продолжит работу. В качестве обходных диодов лучше использовать диоды Шотки, так как падение напряжения на них меньше.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Шаг 4: Как и чем их соединять

Монтаж солнечной батареи начинается с пайки соединительных проводов к светочувствительным элементам. Так как фотоэлементы очень хрупкие и их легко повредить, лучше приобрести их вместе с проводами.

Для пайки нам потребуются: паяльник мощностью 40 Вт или больше, спиртовой раствор канифоли и шины для солнечной батареи. В качестве провода можно также использовать медный интернет провод витая пара, который следует предварительно зачистить от изоляции.

Чтобы припаять элементы, нужно выполнить следующие действия:

Важно! При пайке нужно быть очень аккуратным. Нельзя давить на фотоэлемент, так как он хрупкий и легко трескается.

После того как провода к верхней стороне припаяны, можно клеить элементы на стекло. Алгоритм действий:

Теперь можно провести окончательную проверку работоспособности конструкции. Для этого замеряем напряжение на каждом элементе, оно должно быть 0,5 В. Если напряжение меньше 0,3 В, значит, элемент негодный.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Шаг 5: Защита и герметизация сборки

Для герметизации лучше использовать эпоксидный клей, но можно использовать и силиконовый герметик. При этом он должен выдерживать отрицательные температуры. Чтобы выполнить герметизацию, нужно залить все фотоэлементы, начиная с первого и заканчивая последним.

Полезно! Чем выше температура окружающей среды, тем быстрее происходит затвердевание герметика.

Шаг 6: Устанавливаем элементы в каркас

После того как герметик или эпоксидная смола застынут, можно устанавливать фотоэлементы в корпус. Для защиты конструкции от механических повреждений между задней стенкой и каркасом рекомендуется установить поролоновую прокладку. Однако делать это необязательно, но желательно, учитывая хрупкость кремниевых пластин. Затем алюминиевая рама помещается в деревянный каркас, а на место соединения наносится герметик.

Шаг 7: Подключаем к контроллеру и аккумулятору

Кроме солнечной батареи, для обеспечения электроэнергией всего дома понадобятся аккумулятор, контроллер и инвертор. Контроллер заряда подключается между солнечными источниками тока и аккумулятором. Он контролирует заряд АКБ и защищает аккумулятор от полного разряда и перезаряда.

Читайте также:
Велосипед-санки своими руками: оригинальное решение

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Для преобразования постоянного тока, вырабатываемого батареей, в переменный напряжением 220 В, от которого питаются большинство электрических приборов, нужен инвертор. Они отличаются по форме выходного сигнала. Приборы, выдающие чистую синусоиду, стоят дороже.

Идеи для изготовления из фольги, диодов транзисторов и других подручных средств

Рассмотрим несколько идей, как можно сделать солнечную батарею своими руками из подручных средств.

Один из вариантов – это солнечная батарея из фольги . Чтобы сделать данное устройство, нужно выполнить такие действия:

  1. отрезаем кусок медной фольги и удаляем с его поверхности жир;
  2. обрабатываем медный лист наждаком, чтобы удалить с поверхности оксидную пленку;
  3. нагреваем фольгу на электрической печке в течение 30 минут;
  4. охлаждаем лист на воздухе;
  5. при помощи воды аккуратно удаляем с поверхности пленку оксида меди;
  6. вырезаем еще один лист такого же размера, что и первый;
  7. срезаем горлышко с пластиковой бутылки и помещаем в нее куски медной фольги;
  8. к каждому листу подключаем провода (минусовой вывод – к обработанному листу, плюсовой – к необработанному);
  9. в банку наливаем солевой раствор.

Также можно сделать солнечный фотоэлемент из транзисторов. Для этого можно использовать старые, морально устаревшие транзисторы.

Чтобы получить такой фотоэлемент, нужно срезать с транзистора крышку, зажав его в тиски.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Под крышкой находится пластина. Один кремниевый транзистор в среднем может выдать напряжение равное 0,35 В. Сила тока зависит от типа транзистора.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Чтобы соединить несколько транзисторов в одну батарею, нужно подключить базу одного транзистора к коллектору следующего, как показано на рисунке.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

От такой батареи можно запитать часы или маленький радиоприемник.

Еще можно сделать солнечный источник электрической энергии из диодов. Для этого можно взять диоды Д223Б. На солнце он может генерировать напряжение 350 мВ. Чтобы сделать такую батарею, нужно сделать следующее:

Важно! Диоды нужно впаивать вертикально, положительным выводом вверх. Именно при таком положении генерация энергии будет максимальна.

При изготовлении таких источников тока следует помнить, что любая батарея своими руками из подручных материалов выдает очень небольшую мощность.

Как сделать солнечную батарею своими руками?

Многие компании в интернете реализуют уже готовые собранные панели, которые напрямую подключаются к потребителю. Но, такие устройства имеют куда большую стоимость, чем отдельные элементы. В связи с особенностью климатического пояса полностью перейти на солнечную электроэнергию у вас вряд ли получится, поэтому и готовые солнечные батареи смогут окупиться только через 10 — 40 лет. Чтобы сэкономить на дорогостоящих заводских панелях, куда выгоднее приобрести фотоэлектрические модули, комплектующие к ним и заняться сборкой ячеек в единую солнечную батарею самостоятельно.

Какой вариант выбрать?

Первое, что вам нужно – приобрести фотоэлектрический преобразователь. Различные модели предлагаются как отечественными производителями, так и зарубежными. Наиболее дешевыми вариантами являются китайские кремниевые фотоэлементы. Они имеют ряд недостатков, но, в сравнении с американскими и отечественными, куда более дешевые. Все модели, в зависимости от типа, подразделяются на три вида:

  • монокристаллические модули – состоят из искусственно выращенных кристаллов достаточно больших размеров. Отличаются самым высоким КПД в 13 – 26% и самым длительным сроком эксплуатации в 25 лет. Недостатком солнечных батарей на их основе является снижение максимального КПД в течении периода эксплуатации.
  • поликристаллические фотоэлементы – в сравнении с предыдущими имеют куда меньший срок эксплуатации, как заявляет производитель – 10 лет. Также они могут выдать только 10 – 12% КПД, в с равнении с предыдущими, зато этот параметр остается постоянным для них в течении всего периода работы.
  • аморфные батареи – это пленочные батареи, в которых на гибкую основу нанесен аморфный кремний. Такие фотоэлементы появились сравнительно недавно и могут наклеиваться на любые поверхности – окна, стены и т.д. Они характеризуются самым низким КПД – 5 – 6%.

Выбор определенного типа зависит от ваших пожеланий и поставленных задач. К примеру, если количество солнечного излучения сравнительно невелико в вашем регионе, лучше устанавливать монокристаллические преобразователи, так как у них самый высокий КПД.

Подготовка инструментов и выбор материалов

Помимо преобразователей, для сборки полноценной солнечной панели вам понадобятся такие материалы:

  • Припой – для солнечной батареи необходимы легкоплавкие оловянные сплавы.
  • Соединительные провода – подбираются однопроволочные медные марки. Для соединения монокристаллических и поликристаллических пластин применяются голые проводники, а для отвода электроэнергии изолированные.
  • Рамка – создает основной каркас, в котором располагается вся солнечная батарея. Состоит из основания – ДСП, USB, фанеры и прочих, металлических или деревянных планок, уголков и саморезов для их соединения.
  • Стекло или полимерная пластина – создают защитный слой поверх монокристаллических пластин, также, в сочетании с рамой, служат для скрытия элементов от воздействия атмосферных осадков и механических воздействий.
  • Герметик – наилучшим материалом для герметизации является эпоксидный компаунд, но это достаточно дорогостоящее удовольствие, поэтому его можно заменить силиконовым герметиком.
  • Аккумуляторная батарея – предназначена для накопления электрической энергии в светлое время суток с целью дальнейшего использования. Экономить при выборе батареи не стоит, так как качественная модель прослужит гораздо дольше.
  • Инвертор – используется для преобразования постоянного напряжения в переменное. Преобразователь напряжения необходим для подключения к солнечной батареи любых бытовых приборов.

Из инструментов вам пригодиться ножовка, дрель, шуруповерт или обычная отвертка для закручивания саморезов, мультиметр или амперметр для определения работоспособности солнечной батареи, паяльник.

Составление проекта

На этапе подготовки проекта необходимо определить наиболее подходящее место для установки солнечной батареи. Определите, с какой стороны участка находиться больше всего солнечных лучей, не падает тень от деревьев и других построек. Место установки может быть на земле, скатах крыши, стенах или отдельно стоящих конструкциях. К примеру, если вы хотите установить солнечную батарею на крыше, следует убедиться, что конструкция выдержит ее вес.

Из-за того, что максимальная производительность моно- и поликристаллических ячеек обеспечивается исключительно при перпендикулярном попадании на них солнечных лучей, желательно собрать для них регулируемую конструкцию. Которая позволит изменять угол наклона солнечной батареи, в зависимости от времени года или даже времени суток. Так как положение источника света в различные периоды года и суток значительно отличаются (рисунок 1).

Читайте также:
Вихревой теплогенератор своими руками: экономим деньги

Зависимость положения солнца от времени года

Рис. 1: зависимость положения солнца от времени года

Также обратите внимание, что в стационарно установленной батарее, к примеру, вырабатывающая в идеальных условиях 7 кВт/ч, утром и вечером будет вырабатыватся только 3 кВт/ч. Соответственно, при установке только в одном положении, батарея будет выдавать номинальную мощность лишь несколько месяцев в году. Если вы решите монтировать ее в стационарном положении, панели следует располагать под углом от 50 до 60º, для регулируемых устанавливается два предела – зимний в 70º и летний в 30º, а в промежуточный период, их наклоняют как стационарные.

Чтобы определить количество пластин, необходимо подсчитать, какой электрический ток или мощность генерирует одна из них или 1 м 2 . Как правило, 1 м 2 выдает порядка 125 Вт, поэтому чтобы получить около 2,5 кВт для бытовых нужд, необходимо установить 20 м 2 панелей.

Порядок изготовления солнечной батареи

Элементы на поли- или монокристаллическом кремнии необходимо объединить в единую панель. Для этого осуществляется пайка контактов к проводникам. Порядок пайки следующий:

  • Оголенные проводники нарежьте одинаковыми отрезками под лекало, такой длины, чтобы она в два раза превышала размер элемента солнечной батареи. Рисунок 2: отмерьте проводники с помощью лекала
  • Выложите модули на ровную поверхность (секло, лист фанеры, стол и т.д.).
  • Очистите электрические контакты и полудите оловом, накладывать большое количество припоя сюда не нужно, достаточно слегка покрыть контакт. Рисунок 3: полудите контакты
  • Припаяйте заранее полуженные проводники к контактам, обратите внимание, что сильно придавливать пластины нельзя, так как они очень хрупкие. Рисунок 4: припаяйте провод к элементу
  • Замерьте ток от одного элемента с проводниками, это поможет подсчитать суммарную величину для всей батареи.

Если приобретенные вами элементы для солнечных батарей уже оснащены соединительными проводниками, этот этап можно пропустить и сразу переходить к изготовлению рамки.

Изготовление рамки

Рамка солнечной батареи представляет собой короб с невысокими бортами, который накрывается прозрачным стеклом. Для изготовления рамки:

  • Возьмите прямоугольный лист фанеры или ДСП такого размера, чтобы на нем могло располагаться нужное количество элементов. Просверлите в нем небольшие отверстия на расстоянии 10 см друг от друга для вентиляции. Рис. 5: просверлите отверстия для вентиляции
  • Приклейте по краю листа деревянные планки высотой не более 2 см, чтобы они не отбрасывали тень на солнечные приемники. Дополнительно прикрутите планки небольшими шурупами.
  • Вырежьте крышку из стекла или прозрачного полимера. Ее размеры должны соответствовать нижнему листу или быть меньше, в зависимости от того, поддается она сверлению или нет. Если крышку можно прикрутит шурупом, то размер может быть идентичен, если стекло может лопнуть при попытке сверления, сделайте его меньше на 0,5 – 1 см. Рис. 6: заготовьте крышку из стекла
  • Изготовьте из алюминиевого уголка прижимной каркас для верхней прозрачной крышки солнечной батареи, но пока ничего не прижимайте.

Постарайтесь подобрать материал для прозрачной крышки без бликов, иначе часть энергии солнца будет отражаться, что значительно снизит КПД. После того, как изготовите рамку, соберите солнечную батарею.

Изготовление модулей

Данный этап требует особой осторожности и внимания, поскольку на нем вы формируете электрическую цепь солнечной батареи. Если допустите прожоги или трещины, вы можете испортить не только какой-либо конкретный элемент, но и весь модуль, который в итоге придется переделывать.

  • Разместите солнечные коллекторы лицевой стороной на прозрачной крышке. Оптимально между элементами должно быть 3 – 5 мм, если этого трудно добиться с первого раза, можете сделать разметку на стекле. Рис. 8: разместите элементы
  • Аккуратно спаяйте выводы от каждого элемента «+» к «+», и «–» к «–». Плюсовые контакты должны располагаться на лицевой стороне, а минусовые на внутренней. Рис. 9: спаяйте выводы элементов

Все элементы соединяются последовательно сверху вниз, чтобы не раздавить нижние, когда будете паять. Вертикальные ряды припаяйте на общую шину.

  • Приклейте фотоэлементы к прозрачной крышке, для этого нанесите в центр элемента немного герметика и аккуратно придавите его. Следите, чтобы он располагался строго по разметке, рабочей поверхностью к стеклу, иначе переклеить потом будет проблематично. Рис. 10: приклейте элементы к стеклу
  • Просверлите в рамке отверстия для вывода плюсовой и минусовой шины солнечной батареи. В цепь батареи включите контроллер заряда, который предотвратит разряд заряда аккумулятора на солнечную батарею в темное время суток. Для этого подберите такие характеристики диодов, которые обеспечат полную блокировку цепи от обратного тока.
  • Зафиксируйте выводы солнечной батареи в отверстиях при помощи герметика и поместите в рамку. Рисунок 11: зафиксируйте провода герметиком

После того, как вы собрали батарею, проверьте ее работоспособность. Вынесите ее под солнечные лучи и замерьте величину тока на выводах.

Вынесите на улицу и проверьте мультиметром

Рис. 12: вынесите на улицу и проверьте мультиметром

Сравните это значение с ранее замеренной величиной для одного элемента солнечной батареи. Чтобы проверить правильность, умножьте количество элементов на ток от одного, если прибор показал такое значение или близкое к нему, солнечная батарея собрана правильно и ее можно герметизировать.

Для герметизации используются компаунды или силиконовые герметики, которые подходят для температуры ниже нуля. Для этого солнечную батарею можно как заливать полностью, так и нанести герметик только между модулями.

Залейте герметиком

Рис. 13: залейте герметиком

Второй вариант более экономный, но первый обеспечит вам куда большую надежность и лучшую герметизацию. После герметизации сверху устанавливается умеренный пресс до полного застывания.

Установите умеренный пресс

Рис. 14: установите умеренный пресс

До заливки вы можете установить демпфер из плотного поролона между фотоэлементами солнечной батареи и плитой из ДСП. Ширина поролона выбирается менее высоты борта, в рассматриваемом случае высота – 2 см, соответственно можно взять поролон 1,5 см в толщину. Готовые и проверенные батареи установите согласно составленного проекта и подключите к электрической сети дома через аккумулятор и инвертор.

Как сделать солнечную батарею: 5 лучших мастер-классов

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Читайте также:
Тренажер своими руками: экономим 35 тысяч рублей

солнечная батарея

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

солнечная батарея

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

солнечная батарея

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

солнечная батарея своими руками

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

солнечная батарея своими руками

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

типы солнечных батарей

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

солнечная батарея

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

солнечная батарея своими руками

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

фотоэлементы для солнечных батарей

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

солнечная батарея

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

корпус для солнечной батареи

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

солнечная батарея

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Читайте также:
Ремонтируем зарядное USB-устройство своими руками

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

солнечная батарея на балконе

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

солнечная батарея своими руками

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из фольги

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из транзисторов

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из диодов

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

солнечная батарея своими руками

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Солнечные батареи своими руками. Расчет и выбор солнечных элементов

Разновидности солнечных батарей. На что обращать внимание, вычисляя рабочие параметры солнечной электростанции – опыт пользователей FORUMHOUSE.

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.
Читайте также:
Очень простой мощный усилитель своими руками без больших трат

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Вычисляя суммарную потребляемую мощность, следует учитывать не только номинал электроприборов, но и среднесуточное время работы каждого устройства.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

Для более точного определения потребностей в электричестве необходимо учитывать не только мощность электроприборов, но и дополнительные потери электроэнергии: естественные потери на сопротивление проводников, а также потери на преобразование энергии в контроллере и инверторе, которые зависят от КПД этих устройств.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Каким бы ни получилось конечное значение рекомендуемой мощности, всегда необходимо иметь ее некоторый запас. Ведь со временем электротехнические характеристики солнечной батареи снижаются (батарея стареет). За 25 лет эксплуатации среднестатистическая потеря мощности солнечных панелей составляет 20%.

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Напряжение и сила тока на выходе из панелей должны соответствовать параметрам контроллера, который будет к ним подключен. Это необходимо предусмотреть на стадии расчета солнечной электростанции.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Читайте также:
Ремонтируем зарядное USB-устройство своими руками

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно спорят по этому поводу. Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Не знаю, кто это аморфные рекламирует. КПД у них низкий, места почти в два раза больше занимают, при этом с возрастом КПД, так же, как и у кристаллических, снижается. Классические модули рассчитаны на 25 лет эксплуатации с потерей КПД в 20%. Плюс у аморфных пока только один: выглядят, как черное стекло (можно весь фасад такими покрыть).

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Еще одно преимущества аморфных панелей перед панелями кристаллическими состоит в том, что их элементы можно устанавливать непосредственно в оконные проемы (на месте обычных стекол) или даже использовать их для отделки фасадов.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

О самых популярных альтернативных источниках энергии вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном строительству автономного дома, можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: