Пробник-индикатор для работ с электричеством своими руками – оригинальное решение

Простые измерительные приборы и пробники

Часто при измерениях не требуется знать конкретной величины сопротивления, напряжения, силы тока, а лишь указать, в каком диапазоне находится тот или иной параметр, или выяснить направление его изменения относительно некоторого значения. При ремонте аппаратуры, после выпаивания транзистора или диода, нас интересует, исправен он или нет. В таких случаях нам помогут простейшие устройства — пробники. Как показывает практика, пробники являются теми устройствами, которые изготовляют временно, а затем постоянно используют в работе.

Миниатюрный металлоискатель

Миниатюрный металлоискатель можно собрать на одном транзисторе. Схема конструкции представляет собой разновидность блокинг-генератора. Датчик металлоискателя — трансформатор Т1, укрепленный на самом конце штанги. Магнитопровод этого трансформатора не замкнут, и при приближении его к металлическому предмету меняется индуктивность обмоток. Частота колебаний генератора тоже меняется, и в наушниках появляется сигнал другого тона.

Простой электрический пробник-индикатор

Как проверить лампочку, выключатель, предохранитель…?

Для проверки предохранителя, электрической лампочки накаливания, кипятильника, удлинителя и т.п. совсем необязательно покупать дорогой мультиметр. Можно самому за несколько минут собрать простейший пробник на одной батарейке. Подробнее…

Измерительная мини-лаборатория

Какие измерительные приборы нужны начинающему радиолюбителю? Вольтметр? — Да. Омметр? — Да. Генератор низкой частоты? — Да. Импульсный генератор для проверки работы каскадов на интегральных микросхемах? — Безусловно! Пробник для «прозвонки» монтажа? — Непременно. И, конечно, мечта радиолюбителя — осциллограф, на экране которого можно наблюдать «жизнь» электронных каскадов и узлов.
Подробнее…

Индикатор напряжения схема

Этот индикатор напряжения, он же пробник электрика позволит вам определить фазу, место короткого замыкания или обрыва в сети переменного тока, даст возможность прозвонить обмотки электродвигателя и проверить выпрямительные диоды. Для простоты изготовления и удобства в работе в пробнике электрика отсутствует переключатель режима работы, и выключатель питания. Зато в нем имеется два светодиода разных цветов, а также обычная неоновая лампа. Подробнее…

Индикатор инфракрасного излучения

Этот прибор поможет проверить и отремонтировать устройства, работа которых основана на использовании инфракрасной (ИК) области электромагнитного спектра, — пульты дистанционного управления бытовой техникой, датчики наличия бумаги в принтерах, копировальных и факсимильных аппаратах. Будучи поднесен к источнику не воспринимаемых человеческим глазом ИК лучей, он подаст сигнал об их наличии.
Подробнее…

Простейшие электрические измерения

Начался новый учебный год. Распахиваются двери радиотехнических кабинетов и кружков школ, внешкольных учреждений, профессионально-технических училищ, техникумов, радиоклубов ДОСААФ. За учебный год в радиолюбительство вольется огромная армия энтузиастов этого массового научно-технического движения.
Радиолюбительское конструирование начинается обычно с постройки простого приемника или усилителя низкой частоты. На этом начальном этапе часто можно обойтись без измерительных приборов — если детали исправны, устройство работать будет, хотя, возможно, не с полной отдачей. После этого радиолюбителя влечет конструкция посложнее, а потом еще сложнее. Иначе в радиолюбительстве быть не может. Можно ли теперь обойтись без приборов? Чтобы качество работы этих конструкций отвечало предъявляемым к ним требованиям — нельзя! Да, без них трудно, а иногда просто невозможно хорошо наладить и сознательно подойти к оценке достоинства и недостатков сконструированного радиоаппарата. Подробнее…

Пробник-индикатор без элементов питания

Самые обыкновенные работы, связанные с электричеством, трудно делать без измерительных инструментов.
Совершенно необязательно определять характеристики электронной цепи тестером, в почти всех случаях удобнее обойтись универсальным пробником, инфицирующим наличие этих характеристик средством световых сигналов. Этого полностью довольно для комфортной и неопасной работы с электронными цепями.
Рассматриваемая схема пробника-индикатора не содержит частей питания. Заместо энергии обычно используемых в пробниках батареек, тут употребляется энергия заряженного конденсатора. Подробнее…

Пробник оксидных конденсаторов

Надежность полупроводниковых приборов в современной аппаратуре возросла настолько, что на первое место по числу дефектов вышли оксидно-электролитические конденсаторы [1]. Связано это с наличием в них электролита. Воздействие повышенной температуры, рассеивание в конденсаторе мощности потерь, разгерметизация в уплотнениях корпуса приводят к пересыханию электролита. Идеальный конденсатор при работе в цепи переменного тока имеет только реактивное (емкостное) сопротивление. Реальный же конденсатор, для рассматриваемого далее случая, можно представить в виде идеального конденсатора и соединенного с ним последовательно резистора. Этот резистор называют эквивалентным последовательным сопротивлением конденсатора (далее ЭПС, в англоязычной литературе можно встретить аналогичный термин с аббревиатурой ESR – Equivalent Series Resistance). Подробнее…

Индикатор намагниченности

Как вы знаете, обычный школьный компас чутко реагирует на магнитное поле. Достаточно, скажем, пронести перед его стрелкой намагниченный конец отвертки, как стрелка отклонится. Но, к сожалению, после этого стрелка будет некоторое время по инерции раскачиваться. Поэтому пользоваться таким простейшим прибором для определения намагниченности предметов неудобно. Необходимость же в таком измерительном устройстве возникает нередко.
Подробнее…

Сделай прибор для проверки транзисторов

Итак, ещё одна статься для начинающих радиолюбителей. Прибор для проверки транзисторов на их работоспособность очень важен для сборки почти всех радио устройств. Можно конечно его купить в специальном магазине, но можно сделать и самому. Сегодня это и разберём.

Данный прибор позволяет проверять транзисторы независимо от их типа. Он очень прост и надёжен, поскольку состоит всего лишь из трёх основных деталей. Подробнее…

Пробник для «прозвонки» монтажа

Прежде чем приступить к налаживанию собранной конструкции, нужно, как обычно выражаются, «прозвонить» ее монтаж, то есть проверить правильность всех соединений в соответствии с принципиальной схемой. Зачастую радиолюбители пользуются для этих целей сравнительно громоздким прибором — омметром, или авометром, работающим в режиме измерения сопротивлений.
Подробнее…

Читайте также:
Как клеить линолеум на пол

Пробник для проверки радиоаппаратуры

Пробник (рис. 2.17) предназначен для проверки работоспособности низкочастотных и высокочастотных каскадов радиоаппаратуры, например радиоприемников. Обычно для налаживания и ремонта пользуются двумя генераторами: звуковой частоты, которым проверяют прохождение сигнала через низкочастотные цепи (усилитель звуковой частоты), и генератором высокой частоты, которым исследуют ВЧ-тракт. Конечно, для снятия амплитудно-частотных характеристик без этих приборов не обойтись. Но для отыскания неисправностей й проверки прохождения сигнала вполне подойдут более простые приборы, каким является предлагаемый пробник.

Простой тестер для радиолюбителя

Предлагаем простой вариант сборки схемы для проверки на работоспособность транзисторов любого типа, а также, чтобы прозванивать диоды, конденсаторы и резисторы. Штука очень полезная и нужна каждому радиолюбителю.

Схема тестера и правила пользования

Пробник для «прозвонки» монтажа

Прежде чем приступить к налаживанию собранной конструкции, нужно, как обычно выражаются, «прозвонить» ее монтаж, то есть проверить правильность всех соединений в соответствии с принципиальной схемой. Зачастую радиолюбители пользуются для этих целей сравнительно громоздким прибором — омметром, или авометром, работающим в режиме измерения сопротивлений. Подробнее…

Автомобильный индикатор-пробник

При поиске неисправностей в электропроводке и электрооборудовании автомобиля поможет индикатор-пробник, изображенный на рис. 2.15. Устройство состоит из источника опорного напряжения DA1 и делителя Rl—R4. Между выходом источника напряжения (точка А) и точками соединения резисторов R1, R2 (В) и R3, R4 (С) включены светодиоды HL1 (красного цвета) и HL2 (зеленого цвета) в противоположной полярности.

Светодиодные пробники

На рис. 2.11 и 2.13 изображены простые пробники на основе светодиодов.

Первый из них (рис. 2.11) позволяет проверять цепи смонтированных конструкций и примерно оценить их сопротивление либо сопротивление резисторов проверяемых каскадов. Если сопротивление измеряемой цепи или резистора меньше 600 Ом, вспыхнут все свето- диоды. Если сопротивление больше 600 Ом, но меньше 3 кОм, на такую цепь среагируют только светодиоды HL1 и HL2. Когда же сопротивление цепи превышает 3 кОм, но меньше 20 кОм, «сработает» лишь светодиод HL1. Диапазоны индикации сопротивления можно изменять в ту или иную сторону подбором сопротивлений резисторов Rl—R3.

Электронный индикатор сопротивления

Хотя в этом приборе (рис. 2.9) отсутствует стрелочный индикатор, тем не менее он поможет вам оценить сопротивление электрических цепей конструкции, резисторов, проверить нити накала ламп, предохранители, конденсаторы и т. д. Для индикации результата измерения используется лампа накаливания HL1. Индикатор имеет три предела измерения: 0…20 Ом; 0…100 кОм; 0…25 МОм. В пределах выбранного диапазона измерений величина сопротивления определяется по яркости свечения лампы: чем больше сопротивление, тем менее ярким становится свечение.

Простой пробник для проверки диодов и транзисторов

Предлагаемая ниже схема пробника очень проста и достаточно универсальна. Позволяет быстро проверить работоспособность транзисторов, диодов или прозвонить цепь. Если транзистор исправен, будет вспыхивать соответствующий светодиод, показывая структуру проверяемого транзистора. Подробнее…

Генераторы световых импульсов

Дополнив предыдущий генератор несколькими деталями, удастся получить светодиодную «мигалку» (рис. 2.3).

Генератор работает следующим образом. При включении источника питания конденсаторы С1 и С 2 начинают заряжаться каждый по своей цепи. Конденсатор С1 по цепи Rl, CI, R2, а конденсатор С2 по цепи R3, С2, R2. Поскольку постоянная времени второй цепи много меньше первой, сначала зарядится до напряжения источника питания конденсатор С2. По мере заряда конденсатора С1 транзистор VT1 начинает открываться и открывает транзистор VT2. Далее процесс открывания обеих транзисторов происходит лавинообразно. Сопротивление участка эмиттер-коллектор транзистора VT2 становится очень малым, и напряжение питания батареи GB1 оказывается приложенным к резистору R2. Благодаря элементам R3, С2, называемым схемой «вольтодобавки», заряженный до напряжения источника питания конденсатор С2 оказывается подключенным последовательно с гальваническим элементом и приложенное к светодиоду напряжение почти удваивается. В процессе разряда конденсатора С2 светодиод некоторое время светится, так как к нему приложено напряжение выше порогового. Конденсатор С1 также начинает разряжаться, что приводит к закрытию транзистора VT1, а вслед за ним и VT2. Процесс этот снова происходит лавинообразно, до надежного закрытия обоих транзисторов. Далее конденсаторы С1 и С2 опять начинают заряжаться и работа устройства повторяется, как это было описано выше.

Пробник для проверки диодов и транзисторов

Пробник (рис. 2.19) также, как и предыдущий, выполнен на основе симметричного мультивибратора, но обратные связи через конденсаторы С1 и С2 снимаются с эмиттеров транзисторов VT1 и VT4. Когда транзистор VT2 закрыт, положительное напряжение через открытый транзистор VT1 обеспечивает малое выходное сопротивление и, следовательно, повышенную нагрузочную способность такой схемы. Положительный импульс с эмиттера транзистора VT1 передается через конденсатор С1 на выход мультивибратора. Конденсатор С1 разряжается через диод VD1 и открытый транзистор VT2, поэтому цепь разрядки имеет малое сопротивление.

Как сделать пробник-индикатор для электрика своими руками?

Всем знакома ситуация, когда электроэнергия не поступает к розетке либо какому-то осветительному прибору. Зачастую причиной тому бывает обрыв провода. И здесь не обойтись без прозвонки кабеля, питающего всю систему, а также отдельных проводов. Прозвонка кабеля поможет определить, где прошел пробой сети.

Распределительные коробки многоквартирных домов, как правило, содержат клубок кое-как заизолированных концов проводов без каких-либо обозначений. Розетки и выключатели, особенно в старых домах, давно отслужили свой срок эксплуатации. Поэтому для определения места обрыва электрической цепи приходится проверять все элементы, заново маркировать жилы кабелей.

Читайте также:
Заделываем отверстия в гипсокартоне: эффективный способ

В домашних условиях выполнить прозвонку проводов своими руками можно двумя простыми способами:

  • используя мультиметр;
  • с помощью обычной лампочки и батарейки.

Как видите, прозвонка кабеля – это достаточно простой процесс, который может выполнить каждый человек. Если вам будет интересно, тогда можете прочесть про нож электрика.

Прозвонка кабеля с помощью лампочки и батарейки

Необязательно обладать глубокими познаниями в электронике и радиотехнике, чтобы сделать приспособление для прозвонки проводов и кабелей.

Для создания этого нехитрого прибора необходима лампочка (вольтаж лампочки не должен быть больше вольтажа батарейки), батарейка (либо несколько соединенных между собой батареек), соединительные провода (их длина должна быть достаточной для прозвонки на большом расстоянии), щуп (металлический стержень). Для удобства в работе на конец соединительного провода можно прикрепить зажим «крокодильчик».

Как выполнить прозвонку проводов таким приспособлением? Чтобы прозвонка проводов своими руками была правильной, для этого жилы одного конца кабеля маркируют в произвольном порядке.

Затем к одной из них с помощью зажима прикрепляют провод от батарейки, а присоединенным к лампе щупом поочередно касаются жил на другом конце кабеля. Если при касании лампочка загорелась, значит это жила, к которой присоединен провод от батарейки.

Светодиодный индикатор – пробник для поиска фазы и ноля

Такой индикатор позволяет не просто искать фазу и ноль, но и прозванивать цепь, проверять работоспособность нагревательных элементов приборов, лампочек, сетевых проводов. Есть модели, которые имеют функцию поиска провода в стене без ее сверления или повреждения.

Конструктивно такой пробник ни чем не отличается от предыдущего. С тем отличием, что имеет активный элемент (микросхему или транзистор) вместо неоновой лампы, малогабаритные батарейки и светодиод. Прозвонка совершается в той же последовательности. Только не стоит браться за металлическую площадку на приборе! Она предназначена для проверки целыстности электрических цепей. Если вы коснетесь этой площадки при проверке ноля, то светодиод загорится и вам будет казаться, что это фазный провод.

По стандартам, фазный провод должен располагаться с правой стороны розетки.



Прозвонка многожильного кабеля мультиметром

На сегодняшний день прозвонка проводов выполняется с помощью мультимера. Он предназначен для измерения различных параметров электрического соединения (силы тока, сопротивления, переменного и постоянного напряжения и т.д.).

Если вам необходимо разобраться – куда идет тот или иной провод, проверить работает ли выключатель, розетка, есть ли контакт, нет ли обрывов в проводке, мультиметр поможет без проблем справиться с подобными задачами.

Прозвонка кабеля с помощью мультиметра выполняется следующим образом. На приборе устанавливается режим прозвонки, который отмечают светодиодом (зависит от модели). В распределительной коробке находим фазу. Для этого включаем автомат и с помощью индикаторной отвертки проверяем все провода. Нужный провод маркируем (можно использовать изоляционную ленту, скотч и т.п.). Затем находим ноль. Если вам будет интересно, тогда читайте, как определить сколько ватт в киловатте.

Включаем мультиметр на измерение напряжения (если нужно найти 220В, ставим более 600В, зависит от модели). Одним щупом прибора касаемся фазы, другим поочередно тестируем провода. Когда на приборе появляется 220В – нужный провод найден. Маркируем его. По такому же принципу проверяются и маркируются другие пары электропроводов.

Для проверки целостности электропроводки отключаем кабель от источника тока. Включаем мультиметр в режиме прозвонки либо в режиме измерения сопротивления в самом низком диапазоне значений. Смыкаем щупы прибора, при этом на экране должны появиться нули, издается писк. Размыкаем щупы и присоединяем их к концам провода. Если кабель цел, прибор показывает нулевое сопротивление. Как видите, прозвонка кабеля это простой процесс и для его выполнения потребуется минимальный набор инструментов.

Как сделать пробник-индикатор для электрика своими руками?

Пробник-индикатор можно собрать своими руками в домашних условиях. Для этого потребуется минимум времени и деталей, при этом возможности такого пробника весьма широкие. С его помощью можно легко и быстро проверить состояние электрической проводки, определить «ноль» и «фазу», оценить сопротивление изоляции электроприборов. Кроме того, можно произвести прозвонку электрической оцепи и проверить работоспособность таких радиоэлементов, как резисторы, конденсаторы, диоды и транзисторы. Схема прибора приведена на рис. 1

Рис. 1. Принципиальная схема пробника

Как видно, схема собрана из минимального количества элементов и представляет собой классический усилитель постоянного тока. Резисторы в базах транзисторов Т1 и Т2 ограничивают максимальные значения их базовых токов, а резистор R4 определяет верхний предел измеряемых сопротивлений. Конденсатор С1 служит для создания отрицательной обратной связи по токам переменных значений. Питается прибор от любого маломощного источника напряжения 3 вольта, например, от двух «пальчиковых» батареек или от одной «компьютерной» батарейки (такие стоят на материнских платах). При этом пробник не нуждается ни в каких выключателях питания, так как в режиме «покоя» практически не потребляет ток от элементов питания.

Щуп Х2 прибора делают в виде «иглы» и он жёстко закреплен в корпусе. В качестве него можно применить отрезок медного провода сечением 1,5…2,5 мм. Щуп Х1 — зажим типа «крокодил» на отрезке гибкого многожильного провода длиной около 20 см.

При соединении щупов Х1 и Х2 светодиод загорается. Он будет светиться также при измерении сопротивлений от нуля до 0,5 МОм, при этом от величины измеряемого сопротивления будет зависеть яркость его свечения. При измерении постоянного напряжения светодиод будет гореть, если «плюс» измеряемой цепи будет на щупе Х2. При поиске «фазы» переменной цепи следует держать щуп Х1 в руке, а щупом Х2 касаться токопроводящих проводников. При этом данный пробник не реагирует на так называемое «наведённое напряжение», а лишь конкретно на «фазу», в отличие от обычных, простых пробников на «неонке».

Читайте также:
Ремонт потолка в квартире

В схеме можно применить любые маломощные транзисторы структуры n-p-n, такие так широко распространённые КТ315, КТ3102 или аналогичные импортные. В качестве диода VD1 лучше будет работать маломощный кремниевый, например КД503 или аналогичный. Светодиод HL1 — типа АЛ307 или другой с рабочим напряжением (напряжением зажигания) порядка 2…2,6 вольт. Конденсатор — любой, подходящий по размерам. Резисторы можно применить мощностью 0,25 или 0,5 ватт.

Настройка прибора не представляет сложности.

Для этого следует временно удалить резистор R4 и включить между щупами сопротивление порядка 0,5 МОм. Светодиод должен загореться, а если этого не происходит, то нужно заменить транзисторы на другие, с большими значениями коэффициента усиления по току (h21э). Затем подбором сопротивления резистор R4 нужно добиться минимального свечения светодиода. Так можно настроить прибор и на любое другое значение максимально измеряемого сопротивления.

Диоды и транзисторы данным пробником проверяют как и тестером, измеряя прямое и обратное сопротивление их p-n переходов. Можно проверить и исправность конденсаторов начиная примерно от 0,01 мкФ и более — при подключении исправного конденсатора светодиод вспыхивает на некоторое время. По времени свечения или вспышки светодиода можно приблизительно судить о ёмкости проверяемого элемента. Если конденсатор пробит или у него большой ток утечки, то светодиод будет гореть постоянно. При оценке сопротивления изоляции действуют так же, как при измерении (проверке) сопротивления резисторов. При хорошем качестве изоляции не должно быть никакого свечения светодиода.

Приведённая здесь схема проста в сборке и настройке, имеет хорошую повторяемость и не один раз была опробована на практике. Элементов питания (двух «пальчиковых» батареек) хватает на несколько лет работы в режиме средней интенсивности пользования прибором.

Вот такой пробник-индикатор может получиться в итоге

Или такой….

Поиск фазы при наличии нулевого и заземляющего проводников

Если возникла необходимость в поиска фазы проводке, имеющей нулевой, фазный и заземляющий провода, это можно сделать контролькой. Присвойте каждому проводу номера (условно). Например, 1, 2, 3. Прикасайтесь к проводам по парам 1-2, 2-3, 3-1.

Изменения нужно фиксировать по лампочке:

  • Прикосновение к 1- 2, лампа не светится. Провод 3 фазный
  • Прикосновение к 2-3 и 3-1, 3 провод фазный.

Почему? При подсоединении провода к заземлению или нулю лампочка не будет светиться, потому что эти проводнике на щитке соединены вместе. Вместо контрольки можно использовать вольтметр, выбрав измерение переменного тока и рассчитанным до 300 В.

Проверка фонарика

Маленький светодиодный фонарик – это не просто детская игрушка, хотя некоторые девчонки и мальчишки иногда буквально достают своих родителей, светя в глаза. А если ребетёнок захотел играть в доктора и собирается осмотреть ваше горло – тут и говорить нечего. Подобный крохотный осветительный прибор весьма выручает на тёмной улице или в поисках необходимой мелочи, которая закатилась под диван или тумбочку.

Светодиоды могут перегореть в тот момент, когда мы заряжаем фонарик и при всей доступности и лёгкости приобретения нового, лучше дома сначала убедиться, что поломка произошла. Для этого понадобиться вынуть плату, на которой установлены светодиоды, и применить метод, описанный в предыдущем разделе, используя чуть модернизированные щупы мультиметра, сам тестер или набор батареек.

Кто-то скажет, что фонарики, светодиодные ленты и минисветильники не настолько дороги, чтобы самостоятельно ковыряться в них из-за одного перегоревшего элемента. Но попробуйте объяснить своему сыну, что его любимый фонарик больше не будет работать. Лучше не пробовать, а сесть вместе с ним и починить. Много времени это не займёт, а удовольствия будет столько, что словами не передать. Так что не ленитесь, вооружитесь мультиметром, или «хитрым» приспособлением из батареек и всё будет легко и просто.

Поиск фазы и ноля картошкой

Если вы не имеете специальных приборов, то можно найти фазу картошкой. Один конец проводника следует присоединить к батарее или металлической трубе. Если труба покрашена, зачистите ее до голого металла.

Противоположный конец проводника воткните в срез картошки. Другой проводник так же втыкается в картошку через максимальное расстояние. Второй конец через резистор (не менее 1Мом) следует поднести к проводам электропроводки и поочередно коснуться их. Подождите. Если есть изменения в разрезе картошки, это фаза. Если изменения не наблюдаются — это ноль. Не стоит использовать этот метод, если не знаете правил безопасности при работе с электроустановками.

Индикатор напряжения (пробник электрика) на светодиодах своими руками

Индикатор напряжения своими руками

Проверка напряжения в цепи – процедура, необходимая при выполнении различного рода работ, связанных с электричеством. Некоторые любители-электрики, а иногда и профессионалы пользуются для этого самодельной «контролькой» – патроном с лампочкой, к которому подсоединены провода. Хотя такой метод запрещен «Правилами безопасной эксплуатации электроустановок потребителей», он достаточно эффективен при грамотном использовании. Но все же в этих целях лучше пользоваться светодиодными определителями – пробниками. Их можно купить в магазине, а можно изготовить самостоятельно. В этой статье мы расскажем, для чего нужны эти приборы, по какому принципу они работают и как изготовить индикатор напряжения на светодиодах своими руками.

Читайте также:
Реечный потолок из дерева

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.

Прозвонка самодельным пробником

  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Наиболее простыми и надежными приборами, с помощью которых производятся перечисленные манипуляции, являются индикаторная отвертка и звуковая отвертка.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

Замеры самодельным тестером

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета. Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод. Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Из чего можно сделать корпус щупов

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Заключение

В этом материале мы рассказали, как индикатор напряжения на светодиодах можно собрать своими руками, а также рассмотрели вопрос изготовления простого диагностического прибора на базе звукового наушника.

Использование самодельного пробника напряжения

Как видите, самостоятельно собрать светодиодный индикатор, как и звуковой определитель, достаточно несложно – для этого достаточно иметь под рукой паяльник и нужные детали, а также обладать минимальными электротехническими знаниями. Если же вы не очень любите самостоятельно собирать электрические устройства, то при выборе прибора для несложной диагностики стоит остановиться на обычной индикаторной отвертке, которая продается в магазинах.

Пробник-индикатор для работ с электричеством своими руками – оригинальное решение

2757426890.jpg

Начало.

Часто бывает необходимо в куче проводов найти куда какой идет, узнать целостность цепи, проверить, если ли короткое замыкания или же обрыв, также часто нужно узнать целостность p-n перехода диодов, транзисторов и прочих полупроводником, в этом нам поможет такой инструмент как прозвонка. Она будет несомненно полезна как электрику, так и электронику. Дело в том, что пользоваться режимом прозвонки в мультиметре не всегда бывает удобно, а в некоторых из них вообще отсутствует эта функция, так что такая простая прозвоночка решит эту проблему.

Читайте также:
Венецианская штукатурка для внутренней отделки

1862675823.jpg

Прозвонка очень практичная, ее тон звучания зависит от сопротивления проверяемого участка цепи. Чем больше сопротивление – тем реже щелчки, соответственно при маленьком сопротивлении щелчков будет очень много и они будут слышаться как писк, тональность которого можно настроить номиналами: То бишь на уже готовой плате с впаянными компонентами можно легко найти короткое замыкание, а p-n переходы мы будем слышать не как КЗ, тональность будет отличаться. А если немного приловчиться, то по звуку с легкость возможно сказать где у транзистора эмиттер, а где коллектор (у второго щелчков больше).

Корпус.

Корпус – тоже очень важен, от него будет зависеть насколько приятно будет пользоваться прибором, все-таки эстетика важна. Кроме этого он будет защищать платку и элемент питания от суровых условий повседневной жизни человека работающего с электричеством.

Мною был взят корпус от АТБшного маркера, в него идеально входит один элемент АА и ещё остается место для платы, да и выглядит он хорошо для этих целей.

В качестве щупов кучок медного провода в эмали и цилиндрической кусочек медь, а именно старое жало паяльника, этот цветной металл имеет малое сопротивление и более-менее хорошо переносит O2, особенно с припоем:) На самой плате жало закрепляется расплавленным оловом на определенном участке меди.

3748268977.jpg

На картинке вы можете увидеть, как устроена прозвонка изнутри, сначала идет щуп, который отходит от платы, далее сама плата прозвонки, потом батарейка/аккумулятор, который плотно закрепляется “затычкой”.

Также тут присутствует динамик – это элемент индикации, для громкого воспроизведения звука много дырочек, через которые он колышет воздух. (он не нарисованы!)

Компоненты и замены.

Значения параметров всех применяемых в этой схеме деталей не критично и может варьироваться, например нету резистора 51к, а есть 47к – то смело ставьте его. Все транзисторы – любые, главное чтобы структура совпадала (3 – НПН, 1 – ПНП).

Уведомители.

1520097109.jpg

Динамик конечно же берется миниатюрный – такой как в наушниках. Сопротивление его обычно16 Ом, а громкость вполне достаточная. У меня был в наличии громкоговоритель (speaker) из старой Нокии 6303Ай, весьма хороший телефон нужно отметить. Его я приклеил на обратную сторону платы термоклеем, она выступала в роли резонатора.

2816909855.jpg

Если вы работаете в таком месте где очень шумно, то следует параллельно звукоизлучателю поставить светодиод, который и будет служить световой индикацией.

Питание.

Питание прозвонки – пальчиковая батарейка 1,5 Вольта, если увеличить это значение, то появиться возможность проверять и светодиоды, к тому же громкость звука значительно возрастет. Но в таком случае высокое напряжение может повредить некоторые чувствительные радиодетали.

Добавляем чувствительности.

2592508847.jpg

Хотите супер-мега чувствительность? Тогда отключите электролитический конденсатор С1. Теперь если просто дотронемся до щупов прибора, то он уже начнет бурно на это реагировать. Не знаю зачем, но если хотите такой бешеный режим то поставьте микро-кнопку на один из выводов конденсатора.

3710316927.jpg

А лучше вот вам вообще эта же, но немного измененная схема, таким образом у нас получится два режима: очень маленькая чувствительность и супер-чувствительность до 120 Мом. Между ними можно легко переключаться с помощью кнопок S1 и S2.

Фото.

394953921.jpg

339138580.jpg

1340329464.jpg

(готовая плата с щупом и пружиной, вид сбоку)

1601595054.jpg

(полностью готовая и рабочая прозвонка)

Плата и другие файлы.

4166109694.JPG

Тут можете скачать архив

Видео демонстрация работы.

Вывод.

Схема прозвонки в общем-то несложна, но весьма полезна. Она незаменимая и очень нужная вещь для любого человека, работающего с электричеством. Корпус выбираете сами, тут ваша фантазия безгранична – от полипропиленовых труб до мини-мыльницы, мой выбор меня очень даже устроил. Звук вышел громкий и главное информативный. Также нужно заметить, что пока щупы не замкнуты – потребление тока равно нулю, а это очень экономично.

Связанные статьи

Простой пробник транзисторов своими руками

За недавнее время мне уже надоело проверять мультиметром транзисторы, а именно в режиме прозвонки диодов. Во-первых, это долго и не удобно, во-вторых, колодки на.

Пробник для проверки полевых транзисторов

Привет всем тем кто читает эту статью, в ней я хочу рассказать вам про пробник для маломощных полевых транзисторов. Этим пробником можно проверять, транзисторы серии.

Индикатор напряжения (пробник электрика) на светодиодах своими руками

Индикатор напряжения своими руками

Проверка напряжения в цепи – процедура, необходимая при выполнении различного рода работ, связанных с электричеством. Некоторые любители-электрики, а иногда и профессионалы пользуются для этого самодельной «контролькой» – патроном с лампочкой, к которому подсоединены провода. Хотя такой метод запрещен «Правилами безопасной эксплуатации электроустановок потребителей», он достаточно эффективен при грамотном использовании. Но все же в этих целях лучше пользоваться светодиодными определителями – пробниками. Их можно купить в магазине, а можно изготовить самостоятельно. В этой статье мы расскажем, для чего нужны эти приборы, по какому принципу они работают и как изготовить индикатор напряжения на светодиодах своими руками.

Читайте также:
Как сделать подвесной потолок

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.

Прозвонка самодельным пробником

  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Наиболее простыми и надежными приборами, с помощью которых производятся перечисленные манипуляции, являются индикаторная отвертка и звуковая отвертка.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

Замеры самодельным тестером

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета. Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод. Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

ОБЗОР ПРОБНИКОВ ЭЛЕКТРИКА

Такое название вошло в нашу речь от именования прибора Ц-20 и более свежих версий советского производства. Да, современный цифровой мультиметр очень хорошая штука, и подходит для большинства измерений проводимых электриками, за исключением специализированных, но часто нам не требуется весь функционал мультиметра. Электрики часто носят с собой аркашку, которая представляет собой простейшую прозвонку, с питанием от батареек, и с индикацией целостности цепи на светодиоде или лампочке.

Но такой прибор стоит не дешево, недавно видел в радиомагазине по цене в пределах 300, а с расширенной функциональностью и 400 рублей. Да, прибор хороший, слов нет, многофункциональный, но среди электриков часто попадаются люди творческие, имеющие знания по электронике, выходящие хотя бы минимально, за рамки базового курса колледжа или техникума. Для таких людей и написана эта статья, потому что эти люди, которые собрали хотя бы одно или пару устройств, своими руками, они обычно могут оценить разницу в стоимости радиодеталей, и готового устройства. Скажу по собственному опыту, если конечно будет возможность подобрать корпус для устройства, разница в стоимости может быть в 3, 5, и более раз низкой. Да придется потратить вечер на сборку, освоить для себя что-то новое, то чего раньше не знал, но эти знания стоят потраченного времени. Для знающих людей, радиолюбителей, давно известно, что электроника в частном случае, это не более чем сборка своего рода конструктора ЛЕГО, правда со своими правилами, на освоение которых придется потратить какое-то время. Зато перед вами откроется возможность самостоятельной сборки, а если потребуется то и починки, любого электронного устройства, начальной, а с приобретением опыта и средней сложности. Такой переход, от электрика к радиолюбителю, бывает облегчен тем, что у электрика уже есть в голове необходимая для изучения база, или хотя бы часть её.

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Читайте также:
Деревянный пол в квартире

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Пробники для проверки схем

Данные устройства предназначены для проверки (прозвонки) монтажа собранных конструкций, проверки правильности соединений и соответствии принципиальной схемы. Несомненным удобством пробников является наличие сигнализации, которая позволяет контролировать целостность той или иной цепи. Одна из возможных схем пробника приведена на Рис.1. В нём три маломощных транзистора, два резистора, светодиод и источник питания.

В исходном состоянии все транзисторы закрыты, поскольку на их базах относительно эмиттера нет напряжения смещения. Если же соединить между собой выводы «К зажиму» и «К электроду», в цепи базы транзистора VT1 потечёт ток, значение которого зависит от сопротивления резистора R1. Транзистор откроется, и на его коллекторной нагрузке – резисторе R2 появится падение напряжения. В результате откроются транзисторы VT2 и VT3 и через светодиод VD1 потечёт ток. Светодиод вспыхнет, что и послужит сигналом исправности проверяемой цепи.

Пробник можно собрать в любом варианте. Как один из них в виде небольшого пластмассового корпуса, который можно прикрепить к ремешку от наручных часов. Снизу к ремешку (напротив корпуса прикрепляют металлическую пластину – электрод, соединённую с резистором R1. Когда ремешок застёгнут на руке, электрод прижат к ней. В этом случае пальцы выполняют роль щупа пробника. При использовании браслета никакой дополнительной пластины – электрода не понадобится – вывод резистора R1 соединяют с браслетом. Зажим пробника подсоединяют, например, к одному из концов проводника, который нужно отыскать в жгуте или «прозвонить» в монтаже. Касаясь пальцами поочерёдно концов проводников с другой стороны жгута, нужный проводник находят по появлению свечения светодиода. В данном случае между щупом и зажимом оказывается включённым не только сопротивление проводника, но сопротивление части руки Тем не менее проходящего через эту цепь тока достаточно, чтобы пробник «сработал» и светодиод вспыхнул. Транзистор VT1 может быть любой из серии КТ315 со статическим коэффициентом передачи тока не менее 50, VT2 и VT3 – любые маломощные низкочастотные, соответствующей структуры и с коэффициентом передачи тока не менее 60 (VT2) и 20 (VT3). Светодиод АЛ102 экономичен ( потребляет ток не более 5 мА ), обладает небольшой яркостью свечения. Если она будет недостаточна для ваших целей можно установить светодиод АЛ102Б. В этом случае ток потребления возрастёт в несколько раз ( конечно в момент индикации ). Источник питания – два аккумулятора Д-0,06 или Д 0,07, соединённые последовательно. Выключателя питания в пробнике нет, поскольку в исходном состоянии ( при разомкнутой базовой цепи первого транзистора ) транзисторы закрыты, и ток потребления ничтожен – он соизмерим с током саморазряда источника питания. Пробник можно собрать и на транзисторах одинаковой структуры, например по приведённой на Рис.2 схеме. Правда, он содержит несколько больше деталей, чем предыдущая конструкция, но зато его входная часть оказывается защищенной от электромагнитных цепей, приводящих иногда к ложному вспыхиванию светодиода. В этом пробнике работают кремниевые транзисторы серии КТ315, характеризующиеся малым током коллекторного перехода в широком диапазоне температур. При использовании транзисторов с коэффициентом передачи тока 25 … 30 входное сопротивление пробника составит 10 … 25 Мом. Повышение входного сопротивления нецелесообразно из-за вероятности ложного индицирования внешними наводками и посторонними проводимостями. Как и в предыдущем случае, в исходном состоянии устройство практически не потребляет энергии. Потребляемый ток в режиме индикации не превышает 6 мА. Корректировать входное сопротивление прибора можно подбором резистора R3, предварительно подключив ко входу цепочку резисторов общим сопротивлением 10 … 25 Мом и добиваясь минимальной яркости светодиода. В случае отсутствия светодиода вместо него можно использовать в обоих вариантах малогабаритную лампу накаливания на напряжение 2.5 В и потребляемый ток 0,068 А (например, лампу МН 2,5-0,068). Правда, в этом случае придётся уменьшить сопротивление резистора R1 примерно до 10 кОм и подобрать его точнее по яркости свечения лампы при замкнутых входных проводниках.

В схемах пробников также можно использовать и звуковую индикацию. Схема одного из них, прикреплённого к руке с помощью браслета, приведена на Рис.3. Он состоит из чувствительного электронного ключа на транзисторах VT1, VT4 и генератора звуковой частоты (ЗЧ), собранного на транзисторах VT2, VT3 и миниатюрном телефоне BF1. Частота колебаний генератора равна частоте механического резонанса телефона. Конденсатор С1 снижает влияние наводок переменного тока на работу индикатора. Резистор R2 ограничивает ток коллектора транзистора VT1, а значит, и ток змиттерного перехода транзистора VT4. Резистором R4 устанавливают наибольшую громкость звучания телефона, резистор R5 влияет на надёжность работы генератора при изменении питающего напряжения. Звуковым излучателем BF1 может быть любой миниатюрный телефон сопротивлением от 16 до 150 ом. Источник питания – аккумулятор Д-0,06 или подобный. Транзисторы – любые кремниевые соответствующей структуры, с коэффициентом передачи тока не менее 100 и обратным током коллектора не более 1 мкА.

Читайте также:
Монтаж вагонки на потолок

Конструкция монтируется на изоляционной планке или плате из одностороннего фольгированного стеклотекстолита. Планку (или плату) помещают, например, в металлический корпус в виде наручных часов, с которым соединён металлический браслет. Напротив излучателя в крышке корпуса вырезают отверстие, на боковой стенке укрепляют миниатюрное гнездо разъема ХТ1, в которое вставляют удлинительный проводник с щупом ХР1 ( им может быть зажим “крокодил” ) на конце. Несколько иная схема пробника приведена на Рис.4. В ней используются как кремниевые, так и германиевые транзисторы. Конденсатор С2 шунтирует по переменному току электронный ключ, а конденсатор С3 – источник питания. Транзистор VT1 желательно подобрать с коэффициентом передачи тока не менее 120 и обратным током коллектора менее 5 мкА, VT2 – с коэффициентом передачи не менее 50, VT3 и VT4 – не менее 20 ( и обратным током коллектора не более 10 мкА ). Звуковой излучатель BF1 – капсюль ДЭМ-4 ( или подобный ) сопротивлением 60 … 130 Ом. Пробники со звуковой индикацией потребляют несколько больший ток по сравнению с предыдущими, поэтому при больших перерывах в работе желательно отключать источник питания.

На Рис.5 изображена схема пробника – омметра. Он бывает необходим если при “прозвонки” также желательно измерить примерное сопротивление цепи. Диапазон измеряемых им сопротивлений – от единиц ом до 25МОм. Схему омметра составляет пробник приведённый на Рис.2. Только в омметре параллельно резистору R3 подключают ( в зависимости от диапазона измерений ) один из резисторов R5 – R7. Пока щупы ХР1 и ХР2 разомкнуты ( ничто не подключено ), транзисторы закрыты и пробник не потребляет ток от источника GB1. Но стоит подключить щупы, например к кому-нибудь резистору, как в цепи базы составного транзистора VT1VT2 потечёт ток. Сопротивление участка коллектор – эмиттер транзистора VT2 уменьшится и в его цепи также потечёт ток, который создаст на эмиттерном переходе транзистора VT3 падение напряжения. Оно будет тем больше, чем меньше сопротивление проверяемого резистора и чем больше сопротивление нижнего плеча резистора делителя (резистора R3 и одного из резисторов R5 – R7). В показанном на схеме положении кнопочных выключателей SB1 – SB3 этого напряжения будет достаточно для открывания транзистора VT3 и зажигания светодиода при сопротивлении проверяемого резистора (или цепи) менее 25 МОм. Если же нажать кнопку выключателя SB1, светодиод зажжётся только при сопротивлении до 1 МОм. При нажатии остальных кнопок светодиод будет реагировать лишь на сопротивление, не превышающее обозначенного у кнопки предела.

Транзисторы могут быть серий КТ306, КТ312, КТ315 с любым буквенным индексом, но возможно большим коэффициентом передачи и меньшим обратным током коллектора. Светодиод – АЛ102А, АЛ102Г, АЛ307А. Резисторы МЛТ-0,125 или МЛТ-0,25. Остальные детали – любого типа. Налаживание пробника сводится к установки выбранных пределов измерения. Сначала подбирают щупы пробника к цепочке последовательно соединённых резисторов общим сопротивлением 25 МОм и подбором резистора R3 добиваются минимальной яркости свечения светодиода. Затем щупы подключают к резистору сопротивлением 1 МОм и тех же результатов добиваются подбором резистора R5 при нажатой кнопке выключателя SB1. Аналогично поступают на оставшихся пределах измерения. Следует заметить, что светодиод вспыхивает тем ярче, чем больше коэффициент передачи тока транзистора VT3. Максимальный ток, потребляемый пробником в режиме измерения, не превышает 10 мА.

ИСТОЧНИК: Б. С. Иванов “В ПОМОЩЬ РАДИОКРУЖКУ”, Москва, “Радио и связь”, 1990г, стр.4 – 7.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Работа устройства основывается на начальном напряжении включения светодиода. Любой светодиод — это полупроводниковый прибор, который имеет граничную точку напряжения, только превысив которую он начинает работать (светить). В отличии от лампы накаливания, которая имеет почти линейные вольтамперные характеристики, светодиоду очень близка характеристика стабилитрона, с резкой крутизной тока при увеличении напряжения.

Если включить светодиоды в цепь последовательно с резисторами, то каждый светодиод начнет включаться только после того, как напряжение превысит сумму светодиодов в цепи для каждого отрезка цепи в отдельности.
Порог напряжения открытия или начала загорания светодиода может колебаться от 1,8 В до 2,6 В. Все зависит от конкретной марки.

В итоге, каждый светодиод загорается только после того, как загорелся предыдущий.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов. На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Читайте также:
Как покрасить потолок водоэмульсионной краской

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто – зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Необходимые материалы для изготовления индикатора

Для изготовления простого светодиодного прибора, указывающего фазу или напряжение (приблизительно), необходимо найти рабочую схему. Затем купить или достать следующие детали и инструменты:

  • светодиод любого типа;
  • диод, открывающийся током 10-100 мА при прямом потенциале 1 В, с напряжением пробоя (обратным) не менее 30-75 В;
  • резистор 100-200 кОм;
  • биполярные транзисторы;
  • паяльник;
  • провода;
  • металлическая пластинка (можно вырезать из пивной банки);
  • пластиковый корпус, желательно прозрачный;
  • жало, можно взять обычный гвоздь.

Паяльник с зарядкой от usb

Китайский паяльник с зарядкой от usb.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Схема индикатора напряжения на светодиодах

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством.

Индикатор фазы на светодиоде своими руками

Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

На 12 вольт

Схема индикатора на светодиодах для определения напряжения заряда автомобиля содержит 16 деталей.

Схема на 12 вольт

Схема пробника на 12 вольт.

В приборе установлены три делителя напряжения: на резисторах, стабилитронах и транзисторах. Их выходы подключены к трехцветному светодиоду.

Напряжение (в вольтах) определяют по цвету его свечения:

  • красный – более 14,4;
  • зеленый – 12-14;
  • синий – менее 11,5.

Индикатор состоит из следующих деталей:

  • постоянные резисторы R1, R3, R5 и R6 – 1, 10, 10 и 47 кОм соответственно;
  • потенциометры R2, R4 – 10 и 2,2 кОм;
  • стабилитроны VD1, VD2 и VD3 на 10, 8,2 и 5,6 В;
  • биполярные транзисторы VT- VT3 типа BC847C;
  • светодиод – LED RGB.

Потенциометрами R2, R4 выставляют низший и высший пределы напряжения.

Видео: Как сделать детектор скрытой проводки своими руками из подручных материалов

Схема работает следующим образом:

  • при малом входном потенциале открывается транзистор VT3, а VT2 закрывается (горит синий цвет);
  • при номинальном напряжении ток идет по деталям R5, VD3, R5 на зеленый кристалл (VT2 открыт, а VT3 закрыт);
  • когда потенциал высок, включается делитель R1, VD1, R2, VT1 и зажигается красный.

На 220 вольт

Чтобы обезопасить себя от удара током, на вход индикатора нужно поставить сопротивление с большим номиналом. Общая схема индикатора такова:

  • к жалу подключают один вывод резистора 100-200 кОм;
  • к другому концу припаивают анод диода и катод светодиода;
  • их оставшиеся ножки подсоединяют к металлической пластине.

Схема наличия тока

Схема наличия тока 220 вольт.

Диод в схеме может быть типа КД521, КД503, КД522 (аналоги 1N914, 1N4148). Изготовить индикатор напряжения на светодиодах своими руками на 220 В под силу любому мастеру.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Читайте также:
Оригинальные решения при строительстве: делаем своими руками

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В.

Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой).

До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет.

Вот схема индикатора напряжения на двухцветном светодиоде.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Индикатор для микросхем – логический пробник

Приборы для индикации микросхем называются логическими пробниками. Такой индикатор трехуровневый (в схему включаются 3 светодиода).

Как сделать светодиодный индикатор напряжения своими руками: схемы и инструкция

Логический пробник дает возможность:

  • определить фазу, короткое замыкание, сопротивление электросети;
  • установить наличие напряжения 12 – 400 В;
  • определить полюса при постоянном токе;
  • проверить состояние диодов, транзисторов и других деталей;
  • определить целостность электросети прозвоном;
  • диагностировать обрывы реле и катушек;
  • прозвонить дроссели и моторы;
  • определить выводы трансформаторов.

Важно! Такой прибор не способен функционировать при напряжении до 4 В.

Источник питания батарейка на 9 В. При замкнутых щипах потребляется ток 110 мА. После размыкания ток не потребляется, устанавливать выключатель и переключатель режимов не нужно.

При проверке сети с сопротивлением 0 – 150 Ом горят 2 светодиода, при повышении показателя один. При 220-380 вольтах загорается третий, остальные мерцают. Если цепь порвана, светодиоды не загораются. При нуле на контакте 0,5 В, открывается один транзистор (КТ315Б), при 2,4 В – второй (КТ203Б).

Допускается замена транзисторов на другие, имеющие аналогичные параметры.

Вариант для автомобиля

Схема для индикации заряда аккумулятора и напряжения сети автомобиля состоит из:

  • RGB-светодиода;
  • 3-х стабилитронов;
  • 3-х биполярных транзисторов (BC847C);
  • 9-и резисторов;

Уровень определяется по цвету. Зеленое свечение при 12-14 В, синее – при 11,5 В, красное – при 14,4 В). Если при сборке схемы не допущены ошибки, один из резисторов (на 2,2 кОм) и транзистор (на 8,2 В) определяют минимальный предел вольтажа. При снижении показателя транзистор, соответствующий синему свечению, подключает кристалл.

Если вольтаж не снижается и не повышается, ток проходит через 2 резистора, стабилитрон на 5,6 В и светодиод, появляется свечение зеленого цвета (транзисторы, соответствующие красному и синему цвету, закрываются). При повышении напряжения до 14,4 В загорается красный свет.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: